Concept

Transformational theory

Résumé
Transformational theory is a branch of music theory developed by David Lewin in the 1980s, and formally introduced in his 1987 work, Generalized Musical Intervals and Transformations. The theory—which models musical transformations as elements of a mathematical group—can be used to analyze both tonal and atonal music. The goal of transformational theory is to change the focus from musical objects—such as the "C major chord" or "G major chord"—to relations between musical objects (related by transformation). Thus, instead of saying that a C major chord is followed by G major, a transformational theorist might say that the first chord has been "transformed" into the second by the "Dominant operation." (Symbolically, one might write "Dominant(C major) = G major.") While traditional musical set theory focuses on the makeup of musical objects, transformational theory focuses on the intervals or types of musical motion that can occur. According to Lewin's description of this change in emphasis, "[The transformational] attitude does not ask for some observed measure of extension between reified 'points'; rather it asks: 'If I am at s and wish to get to t, what characteristic gesture should I perform in order to arrive there?'" (from Generalized Musical Intervals and Transformations (GMIT), p. 159) The formal setting for Lewin's theory is a set S (or "space") of musical objects, and a set T of transformations on that space. Transformations are modeled as functions acting on the entire space, meaning that every transformation must be applicable to every object. Lewin points out that this requirement significantly constrains the spaces and transformations that can be considered. For example, if the space S is the space of diatonic triads (represented by the Roman numerals I, ii, iii, IV, V, vi, and vii°), the "Dominant transformation" must be defined so as to apply to each of these triads. This means, for example, that some diatonic triad must be selected as the "dominant" of the diminished triad on vii.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
HUM-274: Musical theory and creativity
This course provides an introduction into music theory and analysis, composition, and creativity, and combines theoretical teaching with hands-on practical exercises and music making.
HUM-242: Musicology and history of music A
Retracer l'histoire de la pratique de l'improvisation dans la musique savante de la Renaissance à nos jours. Analyser les différents contextes, styles, genres musicaux dans lesquels l'improvisation pr
DH-401: Digital musicology
This course will introduce students to the central topics in digital musicology and core theoretical approaches and methods. In the practical part, students will carry out a number of exercises.
Publications associées (11)
Concepts associés (1)
Théorie de la musique
Une théorie de la musique est un ensemble de règles décrivant le système musical d'une culture particulière. Le corpus mondial de textes théoriques concernant la musique est immense. Chaque culture musicale possède ses propres formes. Les théories de la musique regroupent des ensembles de notions concernant la production et l'organisation des sons musicaux, qui ne définissent pas nécessairement tous de la même façon le temps, le caractère distinctif de chaque son, et les relations entre sons successifs ou simultanés.