Uniform polytopeIn geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude vertex-transitive even-sided polygons that alternate two different lengths of edges). This is a generalization of the older category of semiregular polytopes, but also includes the regular polytopes. Further, star regular faces and vertex figures (star polygons) are allowed, which greatly expand the possible solutions.
Regular skew polyhedronIn geometry, the regular skew polyhedra are generalizations to the set of regular polyhedra which include the possibility of nonplanar faces or vertex figures. Coxeter looked at skew vertex figures which created new 4-dimensional regular polyhedra, and much later Branko Grünbaum looked at regular skew faces. Infinite regular skew polyhedra that span 3-space or higher are called regular skew apeirohedra. According to Coxeter, in 1926 John Flinders Petrie generalized the concept of regular skew polygons (nonplanar polygons) to regular skew polyhedra.
Truncation (geometry)In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids. In general any polyhedron (or polytope) can also be truncated with a degree of freedom as to how deep the cut is, as shown in Conway polyhedron notation truncation operation. A special kind of truncation, usually implied, is a uniform truncation, a truncation operator applied to a regular polyhedron (or regular polytope) which creates a resulting uniform polyhedron (uniform polytope) with equal edge lengths.
Tétraèdre tronquéthumb|Patron (géométrie) Le tétraèdre tronqué est un solide d'Archimède. Il possède 4 faces hexagonales régulières, 4 faces triangulaires régulières, 12 sommets et 18 arêtes. Il est obtenu à partir d'un tétraèdre régulier dont on a coupé les quatre sommets en sectionnant les arêtes au tiers de leur longueur. Les coordonnées cartésiennes pour les sommets d'un tétraèdre tronqué centré à l'origine sont : (±3, ±1, ±1), (±1, ±3, ±1), (±1, ±1, ±3), où le nombre de signes négatifs dans chaque triplet de coordonnées est pair (0 ou 2).
Convex uniform honeycombIn geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells. Twenty-eight such honeycombs are known: the familiar cubic honeycomb and 7 truncations thereof; the alternated cubic honeycomb and 4 truncations thereof; 10 prismatic forms based on the uniform plane tilings (11 if including the cubic honeycomb); 5 modifications of some of the above by elongation and/or gyration.
Notation de Conway des polyèdresLa notation de Conway des polyèdres est une notation des polyèdres développée par le mathématicien John Horton Conway. Elle est utilisée pour décrire des polyèdres à partir d'un polyèdre « mère » modifié par diverses opérations. Les polyèdres mères sont les solides de Platon. John Conway a généralisé l'utilisation d'opérateurs, tels la définie par Kepler, afin de générer d'une mère des polyèdres de même symétrie. Ses opérateurs peuvent générer des mères tous les solides d'Archimède et de Catalan.
Polyèdre uniformeUn polyèdre uniforme est un polyèdre dont les faces sont des polygones réguliers et qui est isogonal, c'est-à-dire que pour tout couple de sommets, il existe une isométrie qui applique un sommet sur l'autre. Il en découle que tous les sommets sont congruents et que le polyèdre possède un haut degré de symétrie par réflexion et rotation. La notion de polyèdre uniforme est généralisée, pour un nombre de dimensions quelconque, par celle de . Les polyèdres uniformes peuvent être réguliers, quasi réguliers ou semi-réguliers.
Truncated 24-cellsIn geometry, a truncated 24-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the truncation of the regular 24-cell. There are two degrees of truncations, including a bitruncation. The truncated 24-cell or truncated icositetrachoron is a uniform 4-dimensional polytope (or uniform 4-polytope), which is bounded by 48 cells: 24 cubes, and 24 truncated octahedra. Each vertex joins three truncated octahedra and one cube, in an equilateral triangular pyramid vertex figure.
Truncated tesseractIn geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract. There are three truncations, including a bitruncation, and a tritruncation, which creates the truncated 16-cell. The truncated tesseract is bounded by 24 cells: 8 truncated cubes, and 16 tetrahedra. Truncated tesseract (Norman W. Johnson) Truncated tesseract (Acronym tat) (George Olshevsky, and Jonathan Bowers) The truncated tesseract may be constructed by truncating the vertices of the tesseract at of the edge length.
4-polytope uniformethumb|upright=1.5|alt=Représentation du 120-cellules rectifié selon son diagramme de Schlegel|Diagramme de Schlegel du 120-cellules rectifié. Un 4-polytope uniforme est, en géométrie, un 4-polytope isogonal dont les cellules sont des polyèdres uniformes. Il s'agit de l'équivalent de ces derniers en dimension 4.