Concept

Gleason's theorem

In mathematical physics, Gleason's theorem shows that the rule one uses to calculate probabilities in quantum physics, the Born rule, can be derived from the usual mathematical representation of measurements in quantum physics together with the assumption of non-contextuality. Andrew M. Gleason first proved the theorem in 1957, answering a question posed by George W. Mackey, an accomplishment that was historically significant for the role it played in showing that wide classes of hidden-variable theories are inconsistent with quantum physics. Multiple variations have been proven in the years since. Gleason's theorem is of particular importance for the field of quantum logic and its attempt to find a minimal set of mathematical axioms for quantum theory. In quantum mechanics, each physical system is associated with a Hilbert space. For the purposes of this overview, the Hilbert space is assumed to be finite-dimensional. In the approach codified by John von Neumann, a measurement upon a physical system is represented by a self-adjoint operator on that Hilbert space sometimes termed an "observable". The eigenvectors of such an operator form an orthonormal basis for the Hilbert space, and each possible outcome of that measurement corresponds to one of the vectors comprising the basis. A density operator is a positive-semidefinite operator on the Hilbert space whose trace is equal to 1. In the language of von Weizsäcker, a density operator is a "catalogue of probabilities": for each measurement that can be defined, the probability distribution over the outcomes of that measurement can be computed from the density operator. The procedure for doing so is the Born rule, which states that where is the density operator, and is the projection operator onto the basis vector corresponding to the measurement outcome . The Born rule associates a probability with each unit vector in the Hilbert space, in such a way that these probabilities sum to 1 for any set of unit vectors comprising an orthonormal basis.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.