Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Logique quantiqueLa logique quantique est la base de raisonnements et conclusions en accord avec les postulats de la mécanique quantique. En particulier, les observables n'étant pas forcément commutatives, le théorème d'Heisenberg (cf. le principe d'incertitude), entraîne la notion d'intricats, notion purement quantique comme l'illustre celle de chat mort & vivant du célèbre paradoxe du chat de Schrödinger. John von Neumann a montré, en réfléchissant aux fondations de la mécanique quantique, que la logique d'Aristote (cf.
Born ruleThe Born rule (also called Born's rule) is a postulate of quantum mechanics which gives the probability that a measurement of a quantum system will yield a given result. In its simplest form, it states that the probability density of finding a system in a given state, when measured, is proportional to the square of the amplitude of the system's wavefunction at that state. It was formulated by German physicist Max Born in 1926.
Problème de la mesure quantiqueLe problème de la mesure quantique consiste en un ensemble de problèmes, qui mettent en évidence des difficultés de corrélation entre les postulats de la mécanique quantique et le monde macroscopique tel qu'il nous apparaît ou tel qu'il est mesuré.