Piecewise linear manifoldIn mathematics, a piecewise linear (PL) manifold is a topological manifold together with a piecewise linear structure on it. Such a structure can be defined by means of an atlas, such that one can pass from chart to chart in it by piecewise linear functions. This is slightly stronger than the topological notion of a triangulation. An isomorphism of PL manifolds is called a PL homeomorphism.
Simon DonaldsonSir Simon Kirwan Donaldson, né le à Cambridge, est un mathématicien, connu principalement pour ses travaux sur la topologie des variétés de dimension 4. Donaldson a obtenu son Bachelor of Arts de mathématiques au Pembroke College en 1979, et effectua ses travaux de troisième cycle sous la direction de Nigel Hitchin, puis de Michael Atiyah. Il est encore étudiant lorsqu'il prouve, en 1982, un résultat qui le rendit célèbre, publié dans l'article Self-dual connections and the topology of smooth 4-manifolds en 1983.
Casson handleIn 4-dimensional topology, a branch of mathematics, a Casson handle is a 4-dimensional topological 2-handle constructed by an infinite procedure. They are named for Andrew Casson, who introduced them in about 1973. They were originally called "flexible handles" by Casson himself, and introduced the name "Casson handle" by which they are known today. In that work he showed that Casson handles are topological 2-handles, and used this to classify simply connected compact topological 4-manifolds.
CobordismeEn topologie différentielle, le cobordisme est une relation d'équivalence entre variétés différentielles compactes. Deux variétés compactes M et N sont dites cobordantes ou en cobordisme si leur réunion disjointe peut être réalisée comme le bord d'une variété à bord compacte L. On dit alors que cette variété L est un cobordisme entre M et N, ou bien que L réalise un cobordisme entre M et N. L'existence d'un tel cobordisme implique que M et N soient de même dimension.
Théorème de plongement de WhitneyEn géométrie différentielle, le théorème de plongement de Whitney fait le lien entre les notions de variété abstraite et de sous-variété de l'espace vectoriel réel Rn : toute variété différentielle de dimension m (à base dénombrable par définition) se plonge dans l'espace euclidien de dimension 2m. Cette valeur 2m peut bien sûr être diminuée dans certains exemples particuliers, comme la sphère. Mais pour l'exemple de l'espace projectif réel de dimension m = 2, la constante 2m est optimale.
Topologie différentielleLa topologie différentielle est une branche des mathématiques qui étudie les fonctions différentiables définies sur des variétés différentielles, ainsi que les applications différentiables entre variétés différentielles. Elle est reliée à la géométrie différentielle, discipline avec laquelle elle se conjugue pour construire une théorie géométrique des variétés différentiables. Variété différentielle Les variétés différentielles constituent le cadre de base de la topologie différentielle.