Concept

Topologie différentielle

Résumé
La topologie différentielle est une branche des mathématiques qui étudie les fonctions différentiables définies sur des variétés différentielles, ainsi que les applications différentiables entre variétés différentielles. Elle est reliée à la géométrie différentielle, discipline avec laquelle elle se conjugue pour construire une théorie géométrique des variétés différentiables. Variété différentielle Les variétés différentielles constituent le cadre de base de la topologie différentielle. Il s'agit d'« espaces courbes » sur lesquelles il est possible de définir les notions de base du calcul différentiel et intégral. Une variété différentielle se définit d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R. Les homéomorphismes locaux sont appelés cartes et définissent des systèmes de coordonnées locales. La structure différentielle est définie en exigeant une forme de régularité des applications de transition entre les cartes. Dès lors il est possible de parler d'application différentiable sur une variété ou entre variétés quand l'expression en cartes locales est différentiable. De façon plus générale un certain nombre de notions et d'objets du calcul différentiel ordinaire « passent au cadre des variétés » dès lors qu'ils vérifient eux-mêmes des relations de transformation convenables vis-à-vis du changement de coordonnées. Il existe différents modes de définitions possibles des variétés différentielles et l'un des premiers sujets de la topologie différentielle est d'en faire l'étude. On définit ainsi les immersions qui généralisent la notion de courbe ou surface paramétrée, les submersions qui généralisent l'idée de courbe ou surface définie par des équations, les plongements qui ont les meilleures propriétés. Au commencement et jusqu'au milieu du , topologie et géométrie différentielle étaient étudiées du point de vue « de l'extérieur » : les courbes, les surfaces étaient considérées comme des objets complexes situés dans un espace ambiant très simple, un espace euclidien de dimension supérieure.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.