Concept

Harmonious coloring

In graph theory, a harmonious coloring is a (proper) vertex coloring in which every pair of colors appears on at most one pair of adjacent vertices. It is the opposite of the complete coloring, which instead requires every color pairing to occur at least once. The harmonious chromatic number χ_H(G) of a graph G is the minimum number of colors needed for any harmonious coloring of G. Every graph has a harmonious coloring, since it suffices to assign every vertex a distinct color; thus χ_H(G) ≤ . There trivially exist graphs G with χ_H(G) > χ(G) (where χ is the chromatic number); one example is any path of length > 2, which can be 2-colored but has no harmonious coloring with 2 colors. Some properties of χ_H(G): where T_k,3 is the complete k-ary tree with 3 levels. (Mitchem 1989) Harmonious coloring was first proposed by Harary and Plantholt (1982). Still very little is known about it.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.