Moment cinétique (mécanique quantique)En mécanique quantique le moment cinétique est défini comme un opérateur vectoriel (noté ) à trois composantes, correspondant chacune aux différentes dimensions de l'espace (opérateurs « scalaires »). Celles-ci obéissent entre elles à certaines relations de commutation. Ainsi, alors qu'en mécanique classique les trois composantes du moment cinétique peuvent être simultanément mesurées, ceci est impossible dans le cadre quantique.
SpinLe 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
État quantiqueL'état d'un système physique décrit tous les aspects de ce système, dans le but de prévoir les résultats des expériences que l'on peut réaliser. Le fait que la mécanique quantique soit non déterministe entraîne une différence fondamentale par rapport à la description faite en mécanique classique : alors qu'en physique classique, l'état du système détermine de manière absolue les résultats de mesure des grandeurs physiques, une telle chose est impossible en physique quantique et la connaissance de l'état permet seulement de prévoir, de façon toutefois parfaitement reproductible, les probabilités respectives des différents résultats qui peuvent être obtenus à la suite de la réduction du paquet d'onde lors de la mesure d'un système quantique.
Matrices de PauliLes matrices de Pauli, développées par Wolfgang Pauli, forment, au facteur i près, une base de l'algèbre de Lie du groupe SU(2). Elles sont définies comme l'ensemble de matrices complexes de dimensions suivantes : (où i est l’unité imaginaire des nombres complexes). Ces matrices sont utilisées en mécanique quantique pour représenter le spin des particules, notamment dès 1927 dans l'étude non-relativiste du spin de l'électron : l'équation de Pauli.