In statistical physics, directed percolation (DP) refers to a class of models that mimic filtering of fluids through porous materials along a given direction, due to the effect of gravity. Varying the microscopic connectivity of the pores, these models display a phase transition from a macroscopically permeable (percolating) to an impermeable (non-percolating) state. Directed percolation is also used as a simple model for epidemic spreading with a transition between survival and extinction of the disease depending on the infection rate. More generally, the term directed percolation stands for a universality class of continuous phase transitions which are characterized by the same type of collective behavior on large scales. Directed percolation is probably the simplest universality class of transitions out of thermal equilibrium. One of the simplest realizations of DP is bond directed percolation. This model is a directed variant of ordinary (isotropic) percolation and can be introduced as follows. The figure shows a tilted square lattice with bonds connecting neighboring sites. The bonds are permeable (open) with probability and impermeable (closed) otherwise. The sites and bonds may be interpreted as holes and randomly distributed channels of a porous medium. The difference between ordinary and directed percolation is illustrated to the right. In isotropic percolation a spreading agent (e.g. water) introduced at a particular site percolates along open bonds, generating a cluster of wet sites. Contrarily, in directed percolation the spreading agent can pass open bonds only along a preferred direction in space, as indicated by the arrow. The resulting red cluster is directed in space. Interpreting the preferred direction as a temporal degree of freedom, directed percolation can be regarded as a stochastic process that evolves in time. In the case of bond DP the time parameter is discrete and all sites are updated in parallel. Activating a certain site (called initial seed) at time the resulting cluster can be constructed row by row.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.