Scoring functions for dockingIn the fields of computational chemistry and molecular modelling, scoring functions are mathematical functions used to approximately predict the binding affinity between two molecules after they have been docked. Most commonly one of the molecules is a small organic compound such as a drug and the second is the drug's biological target such as a protein receptor. Scoring functions have also been developed to predict the strength of intermolecular interactions between two proteins or between protein and DNA.
Amarrage (moléculaire)vignette|Petite molécule amarrée à une protéine. Dans le domaine de la modélisation moléculaire, l’amarrage (en anglais docking) est une méthode qui calcule l'orientation préférée d'une molécule vers une seconde lorsqu'elles sont liées pour former un complexe stable. Connaître l'orientation préférée sert à prévoir la solidité de l'union entre deux molécules. Les associations entre des molécules d'importance biologique, telles que les protéines, les acides nucléiques, les glucides et les matières grasses jouent un rôle essentiel dans la transduction de signal.
Amarrage macromoléculaireL'amarrage macromoléculaire (en macromolecular docking) est la modélisation informatique de la structure quaternaire de complexes formés par plusieurs macromolécules biologiques en interaction. Les modélisations les plus courantes étant celles des complexes protéine-protéine et protéine-acide nucléique. L'amarrage vise à prédire la structure tri-dimensionnelle du complexe telle qu'elle est dans l'organisme vivant. La procédure peut produire plusieurs structures candidates qui vont ensuite être classées suivant leur pertinence d'apparaître dans la nature.
Prédiction de la structure des protéinesLa prédiction de la structure des protéines est l'inférence de la structure tridimensionnelle des protéines à partir de leur séquences d'acides aminés, c'est-à-dire la prédiction de leur pliage et de leur structures secondaire et tertiaire à partir de leur structure primaire. La prédiction de la structure est fondamentalement différente du problème inverse de la conception des protéines. Elle est l'un des objectifs les plus importants poursuivis par la bioinformatique et la chimie théorique.
Modélisation de protéines par enfilageLa modélisation d'une protéine par enfilage ou modélisation par reconnaissance des repliements est une technique utilisée pour modéliser des protéines dont on souhaite qu'elles présentent les mêmes coudes que des structures de protéines connues, mais qui ne possèdent pas de protéines homologues recensées dans la banque de données sur les protéines (PDB). Elle s'oppose donc à la méthode de prédiction de structure basée sur la modélisation par homologie.
Root-mean-square deviation of atomic positionsIn bioinformatics, the root-mean-square deviation of atomic positions, or simply root-mean-square deviation (RMSD), is the measure of the average distance between the atoms (usually the backbone atoms) of superimposed proteins. Note that RMSD calculation can be applied to other, non-protein molecules, such as small organic molecules. In the study of globular protein conformations, one customarily measures the similarity in three-dimensional structure by the RMSD of the Cα atomic coordinates after optimal rigid body superposition.
Structural alignmentStructural alignment attempts to establish homology between two or more polymer structures based on their shape and three-dimensional conformation. This process is usually applied to protein tertiary structures but can also be used for large RNA molecules. In contrast to simple structural superposition, where at least some equivalent residues of the two structures are known, structural alignment requires no a priori knowledge of equivalent positions.
CASPCritical Assessment of Structure Prediction (CASP), sometimes called Critical Assessment of Protein Structure Prediction, is a community-wide, worldwide experiment for protein structure prediction taking place every two years since 1994. CASP provides research groups with an opportunity to objectively test their structure prediction methods and delivers an independent assessment of the state of the art in protein structure modeling to the research community and software users.
Structural genomicsStructural genomics seeks to describe the 3-dimensional structure of every protein encoded by a given genome. This genome-based approach allows for a high-throughput method of structure determination by a combination of experimental and modeling approaches. The principal difference between structural genomics and traditional structural prediction is that structural genomics attempts to determine the structure of every protein encoded by the genome, rather than focusing on one particular protein.
Multiple sequence alignmentMultiple sequence alignment (MSA) may refer to the process or the result of sequence alignment of three or more biological sequences, generally protein, DNA, or RNA. In many cases, the input set of query sequences are assumed to have an evolutionary relationship by which they share a linkage and are descended from a common ancestor. From the resulting MSA, sequence homology can be inferred and phylogenetic analysis can be conducted to assess the sequences' shared evolutionary origins.