Lagrangien (théorie des champs)La théorie lagrangienne des champs est un formalisme de la théorie classique des champs. C'est l'analogue de la théorie des champs de la mécanique lagrangienne. La mécanique lagrangienne est utilisée pour analyser le mouvement d'un système de particules discrètes chacune ayant un nombre fini de degrés de liberté. La théorie lagrangienne des champs s'applique aux continus et aux champs, qui ont un nombre infini de degrés de liberté.
Coordonnées canoniquesEn mathématiques et en mécanique classique, les coordonnées canoniques sont des ensembles de coordonnées sur l'espace des phases qui peuvent être utilisées pour décrire un système physique à un moment donné dans le temps. Les coordonnées canoniques sont utilisées dans la formulation hamiltonienne de la mécanique classique. Un concept étroitement lié apparaît également en mécanique quantique ; voir le théorème de Stone-von Neumann et les relations de commutation canoniques pour plus de détails.
Constante de PlanckEn physique, la constante de Planck, notée , également connue sous le nom de « quantum d'action » depuis son introduction dans la théorie des quanta, est une constante physique qui a la même dimension qu'une énergie multipliée par une durée. Nommée d'après le physicien Max Planck, elle joue un rôle central en mécanique quantique car elle est le coefficient de proportionnalité fondamental qui relie l'énergie d'un photon à sa fréquence () et sa quantité de mouvement à son nombre d'onde () ou, plus généralement, les propriétés discrètes de type corpusculaires aux propriétés continues de type ondulatoire.