Alan Turingvignette|Alan Turing vers 1938. Alan Mathison Turing, né le à Londres et mort le à Wilmslow, est un mathématicien et cryptologue britannique, auteur de travaux qui fondent scientifiquement l'informatique. Il est aussi un des pionniers de l'Intelligence artificielle. Pour résoudre le problème fondamental de la décidabilité en arithmétique, il présente en 1936 une expérience de pensée que l'on nommera ensuite machine de Turing et des concepts de programme et de programmation, qui prendront tout leur sens avec la diffusion des ordinateurs, dans la seconde moitié du .
Machine à registres illimitésEn informatique, une machine à registres illimités ou URM (de l'anglais : Unlimited Register Machine) est un modèle abstrait du fonctionnement des appareils mécaniques de calcul, tout comme les machines de Turing et le lambda-calcul. Une URM est Turing-complète. Les registres de la machine sont représentés par : et peuvent contenir des éléments de . Un programme pour cette machine est représenté par toute suite de la forme : qui contient une suite finie d'instructions.
Undecidable problemIn computability theory and computational complexity theory, an undecidable problem is a decision problem for which it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer. The halting problem is an example: it can be proven that there is no algorithm that correctly determines whether arbitrary programs eventually halt when run. A decision problem is a question which, for every input in some infinite set of inputs, answers "yes" or "no"..
Complexité de KolmogorovEn informatique théorique et en mathématiques, plus précisément en théorie de l'information, la complexité de Kolmogorov, ou complexité aléatoire, ou complexité algorithmique d'un objet — nombre, , chaîne de caractères — est la taille du plus petit algorithme (dans un certain langage de programmation fixé) qui engendre cet objet. Elle est nommée d'après le mathématicien Andreï Kolmogorov, qui publia sur le sujet dès 1963. Elle est aussi parfois nommée complexité de Kolmogorov-Solomonoff.
Ordinateur à programme enregistréUn ordinateur à programme enregistré (ou calculateur à programme enregistré; en anglais stored-program computer) est un ordinateur qui enregistre les instructions des programmes qu'il exécute dans sa mémoire vive. La définition précédente est souvent étendue pour exiger que le traitement des instructions et des données en mémoire doive être interchangeable et uniforme.
Turing machine equivalentsA Turing machine is a hypothetical computing device, first conceived by Alan Turing in 1936. Turing machines manipulate symbols on a potentially infinite strip of tape according to a finite table of rules, and they provide the theoretical underpinnings for the notion of a computer algorithm. While none of the following models have been shown to have more power than the single-tape, one-way infinite, multi-symbol Turing-machine model, their authors defined and used them to investigate questions and solve problems more easily than they could have if they had stayed with Turing's a-machine model.
Random access machineEn informatique théorique, la machine RAM, pour Random Access Machine, est un modèle abstrait d'ordinateur destiné à étudier des algorithmes. une machine qui ne fait qu'effectuer des calculs sur des nombres, codés sous la forme d'une suite de symboles. Ces calculs vont donc transformer une suite de symboles en une autre. Les suites de symboles manipulées sont appelées des données, tandis que les calculs qui transforment une chaîne de « caractères » en une autre sont appelées des instructions.
Pointer machineIn theoretical computer science, a pointer machine is an atomistic abstract computational machine model akin to the random-access machine. A pointer algorithm could also be an algorithm restricted to the pointer machine model. Depending on the type, a pointer machine may be called a linking automaton, a KU-machine, an SMM, an atomistic LISP machine, a tree-pointer machine, etc. (cf Ben-Amram 1995). At least three major varieties exist in the literature—the Kolmogorov-Uspenskii model (KUM, KU-machine), the Knuth linking automaton, and the Schönhage Storage Modification Machine model (SMM).
Oméga de Chaitinthumb|right|upright=1.2|Un nombre Oméga de Chaitin est une suite de bits représentant, sous forme concentrée, la solution du problème de l'arrêt pour tous les programmes d'une machine de Turing universelle donnée. En théorie algorithmique de l'information, une constante 'Oméga de Chaitin' (nombres définis et étudiés par Gregory Chaitin) caractérise de manière univoque et mathématiquement précise un nombre réel, qui possède la particularité d'être aléatoire et de ne pas être calculable au sens de Turing : un algorithme donné ne permet de calculer qu'un nombre fini de ses décimales.
Thèse de ChurchLa thèse de Church est une thèse concernant la définition de la notion de calculabilité. Dans une forme dite « physique », elle affirme que la notion physique de la calculabilité, définie comme étant tout traitement systématique réalisable par un processus physique ou mécanique, peut être exprimée par un ensemble de règles de calcul, défini de plusieurs façons dont on a pu démontrer mathématiquement qu'elles sont équivalentes.