Triacontaèdre rhombiqueEn géométrie, le triacontaèdre rhombique est un polyèdre convexe avec 30 faces identiques en forme de losange (rhombe). Solide de Catalan, il est le dual de l'icosidodécaèdre (solide d'Archimède), zonoèdre, il est également un des neuf polyèdres convexes isotoxaux, les autres étant les cinq solides de Platon, le cuboctaèdre, l'icosidodécaèdre, et le dodécaèdre rhombique. Le rapport de la grande diagonale sur la petite diagonale de chaque face est exactement égal au nombre d'or, φ, c’est-à-dire que les angles aigus sur chaque face mesurent 2 tan(1/φ) = tan(2), ou approximativement 63,43°.
BipyramideEn géométrie, un diamant ou bipyramide, ou encore dipyramide, est un polyèdre constitué de deux pyramides symétriques dont la même base forme un polygone régulier. L'ordre du diamant est l'ordre du polygone de la base. C'est aussi l'ordre du sommet de chaque pyramide. Il existe un unique diamant dans les polyèdres réguliers: l'octaèdre. Cependant, pour chaque ordre d'un diamant, il existe un diamant dont toutes les faces sont des triangles isocèles isométriques.
Solide de Catalanthumb|Un dodécaèdre rhombique En mathématiques, un solide de Catalan ou dual archimédien, est un polyèdre dual d'un solide d'Archimède. Les solides de Catalan ont été nommés ainsi en l'honneur du mathématicien belge Eugène Catalan qui, en 1865, fut le premier à les étudier de manière systématique et les décrire et représenter avec soin et minutie. Les solides de Catalan sont tous convexes. Ils sont de faces uniformes mais non de sommets uniformes, en raison du fait que les duaux archimédiens sont de sommets uniformes et non de faces uniformes.
Notation de Conway des polyèdresLa notation de Conway des polyèdres est une notation des polyèdres développée par le mathématicien John Horton Conway. Elle est utilisée pour décrire des polyèdres à partir d'un polyèdre « mère » modifié par diverses opérations. Les polyèdres mères sont les solides de Platon. John Conway a généralisé l'utilisation d'opérateurs, tels la définie par Kepler, afin de générer d'une mère des polyèdres de même symétrie. Ses opérateurs peuvent générer des mères tous les solides d'Archimède et de Catalan.
Icositétraèdre trapézoïdalL'icositétraèdre trapézoïdal ou deltoïdal est un solide de Catalan ressemblant un peu à un cube gonflé de l'intérieur. C'est le polyèdre dual du petit rhombicuboctaèdre. Il est topologiquement équivalent à l'intersection de 4 cylindres de même diamètre, chacun des axes passant par deux sommets opposés d'un cube. Les 24 faces sont des cerfs-volants et non des trapèzes ; l'hexacontaèdre trapézoïdal et les trapèzoèdres sont également mal nommés de manière similaire.
Parallélépipèdevignette|Perspective cavalière d'un parallélépipède. En géométrie dans l'espace, un parallélépipède (ou parallélipipède) est un solide dont les six faces sont des parallélogrammes. Il est au parallélogramme ce que le cube est au carré et ce que le pavé droit est au rectangle. En géométrie affine, où l'on ne tient compte que de la notion de parallélisme, un parallélépipède peut être aussi défini comme un hexaèdre dont les faces sont parallèles deux à deux ; un prisme dont la base est un parallélogramme.
Polyèdre semi-réguliervignette|Le cuboctaèdre, un des 13 solides d'Archimède. Un polyèdre est dit semi-régulier si ses faces sont des polygones réguliers, et si son groupe de symétrie est transitif sur ses sommets. Ou au moins, c'est ce qui découle de la définition de 1900 de Gosset sur le polytope semi-régulier le plus général. Ces polyèdres incluent : Les treize solides d'Archimède. La série infinie des prismes convexes. La série infinie des antiprismes convexes (leur nature semi-régulière fut observée en premier par Kepler).
Trapézoèdre pentagonalIn geometry, a pentagonal trapezohedron or deltohedron is the third in an infinite series of face-transitive polyhedra which are dual polyhedra to the antiprisms. It has ten faces (i.e., it is a decahedron) which are congruent kites. It can be decomposed into two pentagonal pyramids and a pentagonal antiprism in the middle. It can also be decomposed into two pentagonal pyramids and a dodecahedron in the middle. The pentagonal trapezohedron was patented for use as a gaming die (i.e. "game apparatus") in 1906.
Diminished trapezohedronIn geometry, a diminished trapezohedron is a polyhedron in an infinite set of polyhedra, constructed by removing one of the polar vertices of a trapezohedron and replacing it by a new face (diminishment). It has one regular n-gonal base face, n triangle faces around the base, and n kites meeting on top. The kites can also be replaced by rhombi with specific proportions. Along with the set of pyramids and elongated pyramids, these figures are topologically self-dual.
Skew polygonIn geometry, a skew polygon is a polygon whose vertices are not all coplanar. Skew polygons must have at least four vertices. The interior surface (or area) of such a polygon is not uniquely defined. Skew infinite polygons (apeirogons) have vertices which are not all colinear. A zig-zag skew polygon or antiprismatic polygon has vertices which alternate on two parallel planes, and thus must be even-sided. Regular skew polygons in 3 dimensions (and regular skew apeirogons in two dimensions) are always zig-zag.