Concept

Kähler identities

In complex geometry, the Kähler identities are a collection of identities between operators on a Kähler manifold relating the Dolbeault operators and their adjoints, contraction and wedge operators of the Kähler form, and the Laplacians of the Kähler metric. The Kähler identities combine with results of Hodge theory to produce a number of relations on de Rham and Dolbeault cohomology of compact Kähler manifolds, such as the Lefschetz hyperplane theorem, the hard Lefschetz theorem, the Hodge-Riemann bilinear relations, and the Hodge index theorem. They are also, again combined with Hodge theory, important in proving fundamental analytical results on Kähler manifolds, such as the -lemma, the Nakano inequalities, and the Kodaira vanishing theorem. The Kähler identities were first proven by W. V. D. Hodge, appearing in his book on harmonic integrals in 1941. The modern notation of was introduced by André Weil in the first textbook on Kähler geometry, Introduction à L’Étude des Variétés Kähleriennes. A Kähler manifold admits a large number of operators on its algebra of complex differential formsbuilt out of the smooth structure (S), complex structure (C), and Riemannian structure (R) of . The construction of these operators is standard in the literature on complex differential geometry. In the following the bold letters in brackets indicates which structures are needed to define the operator. The following operators are differential operators and arise out of the smooth and complex structure of : the exterior derivative. (S) the -Dolbeault operator. (C) the -Dolbeault operator. (C) The Dolbeault operators are related directly to the exterior derivative by the formula . The characteristic property of the exterior derivative that then implies and . Some sources make use of the following operator to phrase the Kähler identities. (C) This operator is useful as the Kähler identities for can be deduced from the more succinctly phrased identities of by comparing bidegrees. It is also useful for the property that .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (2)

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.