Concept

Hexacontaèdre trapézoïdal

Concepts associés (13)
Polyèdre isoédrique
vignette| Un jeu de dés isoédriques En géométrie, un polytope de dimension 3 (un polyèdre) ou plus est dit isoédrique lorsque ses faces sont identiques. Plus précisément, toutes les faces ne doivent pas être simplement isométriques, mais doivent être transitives, c'est-à-dire qu'elles doivent se trouver dans la même orbite de symétrie. En d'autres termes, pour toutes les faces A et B, il doit y avoir une symétrie de l'ensemble du solide par rotations et réflexions qui envoie A sur B.
Polyèdre sphérique
vignette| Icosaèdre tronqué et ballon de football. Un polyèdre sphérique est constitué par un certain nombre d'arcs de grand cercle d'une même sphère (les arêtes) dont les extrémités (les sommets) sont communes à plusieurs arêtes ; les portions de sphère délimitées par les arêtes sont les faces. Autrement dit, un polyèdre sphérique est un pavage de la sphère par des polygones sphériques. Par abus de langage on appelle aussi polyèdre sphérique un polyèdre réalisant une approximation de la sphère, comme le dodécaèdre régulier, l'icosaèdre régulier ou l'icosaèdre tronqué.
Hexaki-icosaèdre
Un hexaki-icosaèdre est un polyèdre à 120 faces, qui sont des triangles scalènes. Il est parfois appelé hexakis icosaèdre, hexa-icosaèdre ou, plus rarement, disdyakis triacontaèdre (par imitation de l'anglais). Le préfixe hexaki-, d'origine grecque, signifie « 6 fois » et fait référence au nombre de faces : 6 fois les 20 faces de l'icosaèdre. L'hexaki-icosaèdre régulier est un solide de Catalan, puisqu'il est le dual de l'icosidodécaèdre tronqué, solide d'Archimède.
Icosahedral symmetry
In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120.
Notation de Conway des polyèdres
La notation de Conway des polyèdres est une notation des polyèdres développée par le mathématicien John Horton Conway. Elle est utilisée pour décrire des polyèdres à partir d'un polyèdre « mère » modifié par diverses opérations. Les polyèdres mères sont les solides de Platon. John Conway a généralisé l'utilisation d'opérateurs, tels la définie par Kepler, afin de générer d'une mère des polyèdres de même symétrie. Ses opérateurs peuvent générer des mères tous les solides d'Archimède et de Catalan.
Icositétraèdre trapézoïdal
L'icositétraèdre trapézoïdal ou deltoïdal est un solide de Catalan ressemblant un peu à un cube gonflé de l'intérieur. C'est le polyèdre dual du petit rhombicuboctaèdre. Il est topologiquement équivalent à l'intersection de 4 cylindres de même diamètre, chacun des axes passant par deux sommets opposés d'un cube. Les 24 faces sont des cerfs-volants et non des trapèzes ; l'hexacontaèdre trapézoïdal et les trapèzoèdres sont également mal nommés de manière similaire.
Solide de Catalan
thumb|Un dodécaèdre rhombique En mathématiques, un solide de Catalan ou dual archimédien, est un polyèdre dual d'un solide d'Archimède. Les solides de Catalan ont été nommés ainsi en l'honneur du mathématicien belge Eugène Catalan qui, en 1865, fut le premier à les étudier de manière systématique et les décrire et représenter avec soin et minutie. Les solides de Catalan sont tous convexes. Ils sont de faces uniformes mais non de sommets uniformes, en raison du fait que les duaux archimédiens sont de sommets uniformes et non de faces uniformes.
Configuration de sommet
En géométrie, une configuration de sommet est une notation abrégée pour représenter la figure de sommet d'un polyèdre ou d'un pavage comme la séquence de faces autour d'un sommet. Pour les polyèdres uniformes, il n'y a qu'un seul type de sommet et, par conséquent, la configuration des sommets définit entièrement le polyèdre. (Les polyèdres chiraux existent dans des paires d'images miroir avec la même configuration de sommet). Une configuration de sommet est donnée sous la forme d'une suite de nombres représentant le nombre de côtés des faces faisant le tour du sommet.
vignette|redresse=1|Deux dés à jouer ordinaires. vignette|redresse=1|Dé à japonais, présentant un trou plus grand que les autres et peint en rouge pour la face . Un dé est un objet, généralement de petite taille et de forme cubique, qui permet de tirer aléatoirement un nombre ou un symbole parmi plusieurs possibilités. vignette|gauche|upright=1|Quatre dés traditionnels cubiques montrant les six faces d'un dé. vignette|Divers dés faits maison dans une pâte à modeler dure.
Cerf-volant (géométrie)
En géométrie, un cerf-volant est un quadrilatère dont une des diagonales est un axe de symétrie (ou — ce qui est équivalent — un quadrilatère formé de deux paires de côtés adjacents égaux). Les diagonales peuvent se couper à l'intérieur (cerf-volant convexe) ou à l'extérieur (« pointe de flèche » ou cerf-volant non convexe). Ceci contraste avec un parallélogramme, où les côtés égaux sont opposés. L'objet géométrique est nommé en référence au cerf-volant que l'on fait voler, qui a, dans son aspect le plus simple, la forme d'un cerf-volant convexe.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.