Déplacez-vous dans l'architecture Transformer, l'auto-attention et les stratégies de formation pour la traduction automatique et la reconnaissance d'image.
Explore les modèles de séquence à séquence avec BART et T5, en discutant de l'apprentissage du transfert, du réglage fin, des architectures de modèles, des tâches, de la comparaison des performances, des résultats de synthèse et des références.
Explore les mathématiques des modèles de langues, couvrant la conception de l'architecture, la pré-formation et l'ajustement fin, soulignant l'importance de la pré-formation et de l'ajustement fin pour diverses tâches.
Explore la prédiction des réactions chimiques à l'aide de modèles générateurs et de transformateurs moléculaires, soulignant l'importance du traitement du langage moléculaire et de la stéréochimie.
Explique l'architecture complète des Transformateurs et le mécanisme d'auto-attention, en soulignant le changement de paradigme vers l'utilisation de modèles complètement préformés.
Explore la cartographie des atomes dans les réactions chimiques et la transition vers la grammaire réactionnelle à l'aide de l'architecture du transformateur.
Explore l'analyse du modèle neuronal en PNL, couvrant les études d'évaluation, de sondage et d'ablation pour comprendre le comportement et l'interprétabilité du modèle.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.