Concept

Transformeur génératif pré-entraîné

Publications associées (136)

MaskCLR: Attention-Guided Contrastive Learning for Robust Action Representation Learning

Alexandre Massoud Alahi, Mohamed Ossama Ahmed Abdelfattah, Mariam Ahmed Mahmoud Hegazy Hassan

Current transformer-based skeletal action recognition models tend to focus on a limited set of joints and low-level motion patterns to predict action classes. This results in significant performance degradation under small skeleton perturbations or changin ...
2024

Driving and suppressing the human language network using large language models

Martin Schrimpf

Transformer models such as GPT generate human-like language and are predictive of human brain responses to language. Here, using functional-MRI-measured brain responses to 1,000 diverse sentences, we first show that a GPT-based encoding model can predict t ...
Berlin2024

Infusing structured knowledge priors in neural models for sample-efficient symbolic reasoning

Mattia Atzeni

The ability to reason, plan and solve highly abstract problems is a hallmark of human intelligence. Recent advancements in artificial intelligence, propelled by deep neural networks, have revolutionized disciplines like computer vision and natural language ...
EPFL2024

Social-Transmotion: Promptable Human Trajectory Prediction

Alexandre Massoud Alahi, Yang Gao, Kaouther Messaoud Ben Amor, Saeed Saadatnejad

Accurate human trajectory prediction is crucial for applications such as autonomous vehicles, robotics, and surveillance systems. Yet, existing models often fail to fully leverage the non-verbal social cues human subconsciously communicate when navigating ...
2024

GELEX: Generative AI-Hybrid System for Example-Based Learning

Jibril Albachir Frej, Aybars Yazici

Traditional example-based learning methods are often limited by static, expert-created content. Hence, they face challenges in scalability, engagement, and effectiveness, as some learners might struggle to relate to the examples or find them relevant. To a ...
Association for Computing Machinery2024

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.