Grandeur molaire partielleEn thermodynamique, une grandeur molaire partielle quantifie l'évolution d'une grandeur extensive d'un système thermodynamique en fonction de l'évolution de la quantité de l'un de ses constituants. La grandeur molaire partielle, notée , d'un corps dans un mélange est définie par la dérivée partielle de la grandeur extensive totale du mélange par rapport à la quantité (nombre de moles) du corps , à pression , température et quantités des autres composants du mélange constantes : La grandeur molaire partielle d'un corps dans un mélange représente la contribution du corps à la grandeur totale du mélange : celle-ci est en effet reliée aux grandeurs molaires partielles de tous les constituants du mélange par le théorème d'Euler.
Enthalpie de réactionLenthalpie de réaction est une grandeur de réaction associée à l'écriture de l'équation-bilan d'une réaction chimique effectuée à température et pression constantes. Elle s'exprime en joules par mole (J/mol) et correspond à la variation d'enthalpie du mélange réactionnel pour un avancement de la réaction en cours égal à 1 mol.
Loi de RaoultEn physique, et plus particulièrement en thermodynamique, la loi de Raoult énonce que : Dans une solution idéale, à température constante, la pression partielle en phase vapeur d'un constituant est proportionnelle à sa fraction molaire en phase liquide. Cette loi a été établie empiriquement par le physicien français François-Marie Raoult en 1882, elle est dérivée de sa loi de la tonométrie. Elle est utilisée dans de nombreux domaines de la chimie, de la physique et de la météorologie.
Propriété colligativevignette|350px|Diagramme de phases d'un solvant pur (courbes pleines) et du même solvant en présence d'un soluté (pointillés). Les propriétés colligatives se traduisent par un déplacement des courbes d'équilibre solide-liquide et gaz-liquide. En chimie physique, une propriété colligative d'une solution chimique correspond à la différence entre une propriété donnée d'un solvant pur liquide et la même propriété de ce solvant en présence d'un soluté.
Enthalpie de solutionIn thermochemistry, the enthalpy of solution (heat of solution or enthalpy of solvation) is the enthalpy change associated with the dissolution of a substance in a solvent at constant pressure resulting in infinite dilution. The enthalpy of solution is most often expressed in kJ/mol at constant temperature. The energy change can be regarded as being made of three parts: the endothermic breaking of bonds within the solute and within the solvent, and the formation of attractions between the solute and the solvent.
Activité chimiqueEn chimie physique, et plus particulièrement en thermodynamique, l'activité chimique, ou activité, d'une espèce chimique exprime l'écart entre les propriétés de cette espèce pure ou dans un mélange réel et les propriétés de cette même espèce dans un état standard à la même température. La notion d'activité chimique est surtout employée pour les phases liquide et solide. Elle permet notamment le calcul des équilibres de phases et des équilibres chimiques.
FugacitéEn chimie physique, et plus particulièrement en thermodynamique, la fugacité d'une espèce chimique exprime l'écart entre les propriétés de cette espèce pure ou dans un mélange réel et ses propriétés à l'état de gaz parfait pur. Elle a la dimension d'une pression et est notée . La notion de fugacité est applicable à toutes les phases (gaz, liquide, solide), elle permet notamment le calcul des équilibres de phases.
Enthalpy of mixingIn thermodynamics, the enthalpy of mixing (also heat of mixing and excess enthalpy) is the enthalpy liberated or absorbed from a substance upon mixing. When a substance or compound is combined with any other substance or compound, the enthalpy of mixing is the consequence of the new interactions between the two substances or compounds. This enthalpy, if released exothermically, can in an extreme case cause an explosion. Enthalpy of mixing can often be ignored in calculations for mixtures where other heat terms exist, or in cases where the mixture is ideal.
Loi de HenryEn physique, et plus particulièrement en thermodynamique, la loi de Henry, établie empiriquement par le physicien britannique William Henry en 1803, énonce que : À température constante et à saturation, la pression partielle dans la phase vapeur d'un soluté volatil est proportionnelle à la fraction molaire de ce corps dans la solution liquide. En pratique, elle ne s'applique qu'aux faibles concentrations du soluté (fraction molaire inférieure à ) et à des pressions de moins de (domaine d'application de la loi des gaz parfaits).
Activity coefficientIn thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. In an ideal mixture, the microscopic interactions between each pair of chemical species are the same (or macroscopically equivalent, the enthalpy change of solution and volume variation in mixing is zero) and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g. Raoult's law.