Résumé
In corpus linguistics, part-of-speech tagging (POS tagging or PoS tagging or POST), also called grammatical tagging is the process of marking up a word in a text (corpus) as corresponding to a particular part of speech, based on both its definition and its context. A simplified form of this is commonly taught to school-age children, in the identification of words as nouns, verbs, adjectives, adverbs, etc. Once performed by hand, POS tagging is now done in the context of computational linguistics, using algorithms which associate discrete terms, as well as hidden parts of speech, by a set of descriptive tags. POS-tagging algorithms fall into two distinctive groups: rule-based and stochastic. E. Brill's tagger, one of the first and most widely used English POS-taggers, employs rule-based algorithms. Part-of-speech tagging is harder than just having a list of words and their parts of speech, because some words can represent more than one part of speech at different times, and because some parts of speech are complex. This is not rare—in natural languages (as opposed to many artificial languages), a large percentage of word-forms are ambiguous. For example, even "dogs", which is usually thought of as just a plural noun, can also be a verb: The sailor dogs the hatch. Correct grammatical tagging will reflect that "dogs" is here used as a verb, not as the more common plural noun. Grammatical context is one way to determine this; semantic analysis can also be used to infer that "sailor" and "hatch" implicate "dogs" as 1) in the nautical context and 2) an action applied to the object "hatch" (in this context, "dogs" is a nautical term meaning "fastens (a watertight door) securely"). Schools commonly teach that there are 9 parts of speech in English: noun, verb, article, adjective, preposition, pronoun, adverb, conjunction, and interjection. However, there are clearly many more categories and sub-categories. For nouns, the plural, possessive, and singular forms can be distinguished.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.