Classement automatiquevignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».
Désambiguïsation lexicaleLa désambiguïsation lexicale ou désambigüisation lexicale est la détermination du sens d'un mot dans une phrase lorsque ce mot peut avoir plusieurs sens possibles. Dans la linguistique informatique, la désambiguïsation lexicale est un problème non résolu dans le traitement des langues naturelles et de l'ontologie informatique. La résolution de ce problème permettrait des avancées importantes dans d'autres champs de la linguistique informatique comme l'analyse du discours, l'amélioration de la pertinence des résultats des moteurs de recherche, la résolution des anaphores, la cohérence, l'inférence, etc.
TreebankIn linguistics, a treebank is a parsed text corpus that annotates syntactic or semantic sentence structure. The construction of parsed corpora in the early 1990s revolutionized computational linguistics, which benefitted from large-scale empirical data. The term treebank was coined by linguist Geoffrey Leech in the 1980s, by analogy to other repositories such as a seedbank or bloodbank. This is because both syntactic and semantic structure are commonly represented compositionally as a tree structure.
Algorithme de ViterbiL'algorithme de Viterbi, d'Andrew Viterbi, permet de corriger, dans une certaine mesure, les erreurs survenues lors d'une transmission à travers un canal bruité. Son utilisation s'appuie sur la connaissance du canal bruité, c'est-à-dire la probabilité qu'une information ait été modifiée en une autre, et permet de simplifier radicalement la complexité de la recherche du message d'origine le plus probable. D'exponentielle, cette complexité devient linéaire.
CorpusUn corpus est un ensemble de documents, artistiques ou non (textes, s, vidéos), regroupés dans une optique précise. On peut utiliser des corpus dans plusieurs domaines : études littéraires, linguistiques, scientifiques, philosophie La branche de la linguistique qui se préoccupe plus spécifiquement des corpus s'appelle logiquement la linguistique de corpus. Elle est liée au développement des systèmes informatiques, en particulier à la constitution de bases de données textuelles.
Synthèse vocaleLa synthèse vocale est une technique informatique de synthèse sonore qui permet de créer de la parole artificielle à partir de n'importe quel texte. Pour obtenir ce résultat, elle s'appuie à la fois sur des techniques de traitement linguistique, notamment pour transformer le texte orthographique en une version phonétique prononçable sans ambiguïté, et sur des techniques de traitement du signal pour transformer cette version phonétique en son numérisé écoutable sur un haut parleur.
Linguistique de corpusLa linguistique de corpus est une branche de la linguistique qui étudie le langage à travers des exemples contenus dans des textes réels. En particulier elle se propose d'extraire d'un corpus les connaissances linguistiques essentielles à l’enseignement des langues et à l'élaboration des dictionnaires. La linguistique de corpus situe la signification dans le discours et dans l'interaction entre les gens plutôt que dans l'esprit des locuteurs. En effet le sens des mots est déterminé par le contexte dans lequel ils sont employés.
Modèle de Markov cachéUn modèle de Markov caché (MMC, terme et définition normalisés par l’ISO/CÉI [ISO/IEC 2382-29:1999]) — (HMM)—, ou plus correctement (mais non employé) automate de Markov à états cachés, est un modèle statistique dans lequel le système modélisé est supposé être un processus markovien de paramètres inconnus. Contrairement à une chaîne de Markov classique, où les transitions prises sont inconnues de l'utilisateur mais où les états d'une exécution sont connus, dans un modèle de Markov caché, les états d'une exécution sont inconnus de l'utilisateur (seuls certains paramètres, comme la température, etc.
Compréhension du langage naturelvignette|L'apprentissage de la lecture par Sigurður málari, siècle. La compréhension du langage naturel (NLU en anglais) ou linterprétation en langage naturel (NLI) est une sous-rubrique du traitement de la langue naturelle en intelligence artificielle qui traite de la compréhension en lecture automatique. La compréhension du langage naturel est considérée comme un problème difficile en IA. Il existe un intérêt commercial considérable dans ce domaine en raison de son application à la collecte de nouvelles, à la catégorisation des textes, à l'activation vocale, à l'archivage et à l'analyse de contenu à grande échelle.
Traitement automatique du langage naturelLe traitement automatique du langage naturel (TALN), en anglais natural language processing ou NLP, est un domaine multidisciplinaire impliquant la linguistique, l'informatique et l'intelligence artificielle, qui vise à créer des outils de traitement du langage naturel pour diverses applications. Il ne doit pas être confondu avec la linguistique informatique, qui vise à comprendre les langues au moyen d'outils informatiques.