Surface areaThe surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with flat polygonal faces), for which the surface area is the sum of the areas of its faces. Smooth surfaces, such as a sphere, are assigned surface area using their representation as parametric surfaces.
Homeomorphism groupIn mathematics, particularly topology, the homeomorphism group of a topological space is the group consisting of all homeomorphisms from the space to itself with function composition as the group operation. Homeomorphism groups are very important in the theory of topological spaces and in general are examples of automorphism groups. Homeomorphism groups are topological invariants in the sense that the homeomorphism groups of homeomorphic topological spaces are isomorphic as groups.
Closed manifoldIn mathematics, a closed manifold is a manifold without boundary that is compact. In comparison, an open manifold is a manifold without boundary that has only non-compact components. The only connected one-dimensional example is a circle. The sphere, torus, and the Klein bottle are all closed two-dimensional manifolds. The real projective space RPn is a closed n-dimensional manifold. The complex projective space CPn is a closed 2n-dimensional manifold. A line is not closed because it is not compact.
ConnectivitéLa connectivité désigne ce qu'une entité offre comme à d'autres entités de son environnement. Elle se rapporte plus généralement à la théorie des graphes. En écologie, la connectivité écologique désigne le degré de non-fragmentation écologique des milieux et paysages. La connectivité est parfois utilisée pour désigner les connecteurs offerts par un dispositif physique, par exemple, pour un appareil électrique. En géométrie, la connectivité peut aussi désigner le voisinage d'une entité dans un pavage.
Domaine fondamentalGiven a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each of these orbits. It serves as a geometric realization for the abstract set of representatives of the orbits. There are many ways to choose a fundamental domain. Typically, a fundamental domain is required to be a connected subset with some restrictions on its boundary, for example, smooth or polyhedral.
Solid torusIn mathematics, a solid torus is the topological space formed by sweeping a disk around a circle. It is homeomorphic to the Cartesian product of the disk and the circle, endowed with the product topology. A standard way to visualize a solid torus is as a toroid, embedded in 3-space. However, it should be distinguished from a torus, which has the same visual appearance: the torus is the two-dimensional space on the boundary of a toroid, while the solid torus includes also the compact interior space enclosed by the torus.
Fundamental pair of periodsIn mathematics, a fundamental pair of periods is an ordered pair of complex numbers that defines a lattice in the complex plane. This type of lattice is the underlying object with which elliptic functions and modular forms are defined. A fundamental pair of periods is a pair of complex numbers such that their ratio is not real. If considered as vectors in , the two are not collinear. The lattice generated by and is This lattice is also sometimes denoted as to make clear that it depends on and It is also sometimes denoted by or or simply by The two generators and are called the lattice basis.
Fundamental polygonIn mathematics, a fundamental polygon can be defined for every compact Riemann surface of genus greater than 0. It encodes not only the topology of the surface through its fundamental group but also determines the Riemann surface up to conformal equivalence. By the uniformization theorem, every compact Riemann surface has simply connected universal covering surface given by exactly one of the following: the Riemann sphere, the complex plane, the unit disk D or equivalently the upper half-plane H.
Somme connexeEn mathématiques, et plus précisément en topologie, la somme connexe est une opération qui s'effectue sur des variétés connexes de même dimension. La somme connexe de deux variétés connexes de même dimension n est obtenue en retirant à chacune un petit voisinage d'un point formé d'une boule ouverte, et en recollant les deux variétés ainsi obtenues (techniquement : en prenant l'espace quotient de leur union disjointe) le long des deux sphères Sn–1 apparues.
ToroidIn mathematics, a toroid is a surface of revolution with a hole in the middle. The axis of revolution passes through the hole and so does not intersect the surface. For example, when a rectangle is rotated around an axis parallel to one of its edges, then a hollow rectangle-section ring is produced. If the revolved figure is a circle, then the object is called a torus. The term toroid is also used to describe a toroidal polyhedron. In this context a toroid need not be circular and may have any number of holes.