Résumé
In chemical engineering, biochemical engineering and protein purification, crossflow filtration (also known as tangential flow filtration) is a type of filtration (a particular unit operation). Crossflow filtration is different from dead-end filtration in which the feed is passed through a membrane or bed, the solids being trapped in the filter and the filtrate being released at the other end. Cross-flow filtration gets its name because the majority of the feed flow travels tangentially across the surface of the filter, rather than into the filter. The principal advantage of this is that the filter cake (which can blind the filter) is substantially washed away during the filtration process, increasing the length of time that a filter unit can be operational. It can be a continuous process, unlike batch-wise dead-end filtration. This type of filtration is typically selected for feeds containing a high proportion of small particle size solids (where the permeate is of most value) because solid material can quickly block (blind) the filter surface with dead-end filtration. Industrial examples of this include the extraction of soluble antibiotics from fermentation liquors. The main driving force of cross-flow filtration process is transmembrane pressure. Transmembrane pressure is a measure of pressure difference between two sides of the membrane. During the process, the transmembrane pressure might decrease due to an increase of permeate viscosity, therefore filtration efficiency decreases and can be time-consuming for large-scale processes. This can be prevented by diluting permeate or increasing flow rate of the system. In crossflow filtration, the feed is passed across the filter membrane (tangentially) at positive pressure relative to the permeate side. A proportion of the material which is smaller than the membrane pore size passes through the membrane as permeate or filtrate; everything else is retained on the feed side of the membrane as retentate.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.