The elasticity tensor is a fourth-rank tensor describing the stress-strain relation in
a linear elastic material. Other names are elastic modulus tensor and stiffness tensor. Common symbols include and .
The defining equation can be written as
where and are the components of the Cauchy stress tensor and infinitesimal strain tensor, and are the components of the elasticity tensor. Summation over repeated indices is implied. This relationship can be interpreted as a generalization of Hooke's law to a 3D continuum.
A general fourth-rank tensor in 3D has 34 = 81 independent components , but the elasticity tensor has at most 21 independent components. This fact follows from the symmetry of the stress and strain tensors, together with the requirement that the stress derives from an elastic energy potential. For isotropic materials, the elasticity tensor has just two independent components, which can be chosen to be the bulk modulus and shear modulus.
The most general linear relation between two second-rank tensors is
where are the components of a fourth-rank tensor . The elasticity tensor is defined as for the case where and are the stress and strain tensors, respectively.
The compliance tensor is defined from the inverse stress-strain relation:
The two are related by
where is the Kronecker delta.
Unless otherwise noted, this article assumes is defined from the stress-strain relation of a linear elastic material, in the limit of small strain.
For an isotropic material, simplifies to
where and are scalar functions of the material coordinates
and is the metric tensor in the reference frame of the material. In an orthonormal Cartesian coordinate basis, there is no distinction between upper and lower indices, and the metric tensor can be replaced with the Kronecker delta:
Substituting the first equation into the stress-strain relation and summing over repeated indices gives
where is the trace of .
In this form, and can be identified with the first and second Lamé parameters.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
Le tenseur des contraintes est un tenseur d'ordre 2 utilisé en mécanique des milieux continus pour caractériser l'état de contrainte, c'est-à-dire les efforts intérieurs mis en jeu entre les portions déformées d'un milieu. Le terme a été introduit par Cauchy vers 1822. Comme les efforts intérieurs sont définis pour chaque surface coupant le milieu (on parle d'ailleurs également d'efforts surfaciques), le tenseur est défini localement, en chaque point du solide. L'état de contrainte du solide est donc représenté par un champ tensoriel.
En physique, l'élasticité est la propriété d'un matériau solide à retrouver sa forme d'origine après avoir été déformé. La déformation élastique est une déformation réversible. Un matériau solide se déforme lorsque des forces lui sont appliquées. Un matériau élastique retrouve sa forme et sa taille initiales quand ces forces ne s'exercent plus, jusqu'à une certaine limite de la valeur de ces forces. Les tissus biologiques sont également plus ou moins élastiques. Les raisons physiques du comportement élastique diffèrent d'un matériau à un autre.
Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: infinitesimal strains or "small" deformations (or strains) and linear relationships between the components of stress and strain. In addition linear elasticity is valid only for stress states that do not produce yielding.
Explore la modélisation constitutive en géomécanique, en mettant l'accent sur le comportement stress-souche et l'application de modèles élastiques dans les méthodes analytiques et numériques.
When two objects slide against each other, wear and friction occur at their interface. The accumulation of wear forms what is commonly referred to as a ``third-body''. Understanding third-body evolution has significant applications in industry, where contr ...
EPFL2024
Scientific progress and technological advancements on novel materials are often deterred by limitations on size and quality of samples. Materials with electronic phenomena attractive for applications, and presenting many open scientific questions, are ofte ...
Recent surging interest in strengthening of High Entropy Alloys (HEAs) with possible chemical ordering motivates the development of new theory. Here, an existing theory for random alloys that accounts for solute-dislocation and solute–solute interactions i ...