Résumé
thumb|Mesure de la position d'un ensemble de particules étant dans le même état superposé. En mécanique quantique, selon le principe de superposition, un même état quantique peut posséder plusieurs valeurs pour une certaine quantité observable (spin, position, quantité de mouvement, etc.) Ce principe résulte du fait que l'état – quel qu'il soit – d'un système quantique (une particule, une paire de particules, un atome, etc.) est représenté par un vecteur dans un espace vectoriel nommé espace de Hilbert (premier postulat de la mécanique quantique). Comme tout vecteur de tout espace vectoriel, ce vecteur admet une décomposition en une combinaison linéaire de vecteurs selon une base donnée. Or, il se trouve qu'en mécanique quantique, une observable donnée (comme la position, la quantité de mouvement, le spin, etc.) correspond à une base donnée de l'espace de Hilbert. En conséquence, si l'on s'intéresse, par exemple, à la position d'une particule, l'état de position doit être représenté comme une somme d'un nombre (infini!) de vecteurs, chaque vecteur représentant une position précise dans l'espace. Le carré de la norme de chacun de ces vecteurs représente la probabilité de présence de la particule à une position donnée. En notation bra-ket, la superposition d'un état quantique se note : étant le coefficient complexe de la combinaison linéaire, et les vecteurs de la base choisie (qui dépend de l'observable). Cette combinaison linéaire est nommée état de superposition, car la particule peut être vue comme étant simultanément, avec des probabilités diverses, en plusieurs endroits. L'état de superposition s'applique de la même façon à toutes les autres observables imaginables : vitesse, spin... et même mort/vivant dans le cas du célèbre Chat de Schrödinger. C'est lors d'une opération de mesure que le vecteur représentant toutes les positions possibles se retrouve projeté sur un des vecteurs de la base, et est donc mesuré à une position (ou toute autre observable) précise (postulat 5 de la mécanique quantique).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (25)
Amplitude de probabilité
vignette|Une fonction d'onde pour un seul électron dans l'orbite atomique 5d d'un atome d'hydrogène . La forme montre les endroits où la densité de probabilité de l'électron est supérieure à une certaine valeur, celle-ci est calculée avec l'amplitude de probabilité. La teinte sur la surface colorée montre la phase complexe de la fonction d'onde. En mécanique quantique, une amplitude de probabilité est un nombre complexe utilisé pour décrire le comportement d'un système.
État quantique
L'état d'un système physique décrit tous les aspects de ce système, dans le but de prévoir les résultats des expériences que l'on peut réaliser. Le fait que la mécanique quantique soit non déterministe entraîne une différence fondamentale par rapport à la description faite en mécanique classique : alors qu'en physique classique, l'état du système détermine de manière absolue les résultats de mesure des grandeurs physiques, une telle chose est impossible en physique quantique et la connaissance de l'état permet seulement de prévoir, de façon toutefois parfaitement reproductible, les probabilités respectives des différents résultats qui peuvent être obtenus à la suite de la réduction du paquet d'onde lors de la mesure d'un système quantique.
Fonction d'onde
thumb|300px|right|Illustration de la notion de fonction d'onde dans le cas d'un oscillateur harmonique. Le comportement en mécanique classique est représenté sur les images A et B et celui en mécanique quantique sur les figures C à H. Les parties réelles et imaginaires des fonctions d'onde sont représentées respectivement en bleu et en rouge. Les images C à F correspondent à des états stationnaires de l'énergie, tandis que les figures G et H correspondent à des états non stationnaires.
Afficher plus
Cours associés (24)
PHYS-454: Quantum optics and quantum information
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
COM-309: Introduction to quantum information processing
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
PHYS-641: Quantum Computing
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament
Afficher plus