Stephen HawkingStephen William Hawking (prononcé ), né le à Oxford et mort le à Cambridge, est un physicien théoricien et cosmologiste britannique. Ses livres et ses apparitions publiques ont fait de ce théoricien de renommée mondiale une célébrité. Depuis l'âge d'une vingtaine d'années, Hawking souffre d'une forme rare de sclérose latérale amyotrophique (SLA) ; sa maladie progresse au fil des ans au point de le laisser presque complètement paralysé.
Trou noir extrémalEn physique théorique, un trou noir extrémal est un trou noir avec la masse minimale possible compatible avec sa charge électrique et son moment angulaire. Dans les théories dites supersymétriques, comme la théorie des supercordes, les trous noirs extrêmaux sont souvent supersymétriques, ce qui signifie qu'ils sont invariants sous plusieurs supercharges. Ces trous noirs sont stables. La gravité de surface d'un trou noir extrémal s'annule. Sa température de Hawking s'annule de sorte qu'il n'émet pas de rayonnement de Hawking.
Mur de feuvignette|Représentation d'un observateur qui tombe dans un trou noir (subissant une spaghettification). Le mur de feu est, en physique théorique, un phénomène hypothétique qui se produirait à l'horizon des événements d'un trou noir. Il est en effet prédit qu'il existe une zone de grande densité énergétique autour d'un trou noir, créée par le bris d'intrications quantiques généré par le rayonnement de Hawking.
Limite de BekensteinEn physique, la limite de Bekenstein est une limite supérieure à l'entropie S, ou l'information I qui peut être contenue dans une région finie donnée de l'espace qui contient une quantité finie d'énergie ou, réciproquement, la quantité maximum d'information requise pour décrire parfaitement un système physique donné jusqu'au niveau quantique. Elle implique que l'information d'un système physique, ou l'information nécessaire pour décrire parfaitement ce système, doit être finie si cette région de l'espace et son énergie sont finies.
Horizon des événementsL'horizon des événements est, en relativité restreinte et en relativité générale, constitué par la limite éventuelle de la région qui peut être influencée dans le futur par un observateur situé en un endroit donné à une époque donnée. Dans le cas d'un trou noir, en particulier, on peut définir son horizon des événements comme une surface qui l'entoure, d'où aucun objet, ni même un rayon de lumière ne peut jamais échapper au champ gravitationnel du trou noir.
Complémentarité des trous noirsBlack hole complementarity is a conjectured solution to the black hole information paradox, proposed by Leonard Susskind, Larus Thorlacius, and Gerard 't Hooft. Ever since Stephen Hawking suggested information is lost in an evaporating black hole once it passes through the event horizon and is inevitably destroyed at the singularity, and that this can turn pure quantum states into mixed states, some physicists have wondered if a complete theory of quantum gravity might be able to conserve information with a unitary time evolution.
Leonard SusskindLeonard Susskind, né le à New York, est un physicien américain qui occupe la chaire Felix Bloch de physique théorique à l'université Stanford, et qui est directeur du Stanford Institute for Theoretical Physics. Ses domaines de recherche incluent la théorie des cordes, la théorie quantique des champs, la mécanique quantique statistique et la cosmologie quantique. Il est membre de la National Academy of Sciences, de l'American Academy of Arts and Sciences, est membre associé de la Perimeter Institute for Theoretical Physics de la Faculté du Canada et professeur distingué de la Korea Institute for Advanced Study.
Diagramme de Penrose-Cartervignette|droite|250px|Diagramme de Penrose d'un espace de Minkowski infini. Deux dimensions d'espace ont été éliminées et la dimension (spatiale) infinie est représentée sur un segment (fini) horizontal. L'axe temporel est vertical. Un diagramme de Penrose-Carter est un diagramme bidimensionnel utilisé, en relativité générale, pour faciliter l'étude des propriétés causales d'un espace-temps.
Fuzzball (théorie des cordes)284px|vignette|droite|Selon la théorie, les fuzzballs, tout comme les trous noirs classiques, déforment l'espace-temps et courbent la lumière. Ici, le bord de la tache noire centrale, l'horizon des événements, correspond non seulement à la surface où sa vitesse de libération est égale à la vitesse de la lumière mais aussi la surface physique de la fuzzball. (Vue d'artiste.
Thermodynamique des trous noirsLa thermodynamique des trous noirs est la branche de l'étude des trous noirs qui s'est développée à la suite de la découverte d'une analogie profonde entre certaines propriétés des trous noirs et les lois de la thermodynamique au début des années 1970. Cette analogie est ensuite devenue pertinente grâce à la découverte par Stephen Hawking du phénomène d'évaporation des trous noirs (1975), démontrant qu'un trou noir n'est pas un objet complètement sombre, mais émet un très faible rayonnement thermique.