Concept

Supercommutative algebra

In mathematics, a supercommutative (associative) algebra is a superalgebra (i.e. a Z2-graded algebra) such that for any two homogeneous elements x, y we have where |x| denotes the grade of the element and is 0 or 1 (in Z_2) according to whether the grade is even or odd, respectively. Equivalently, it is a superalgebra where the supercommutator always vanishes. Algebraic structures which supercommute in the above sense are sometimes referred to as skew-commutative associative algebras to emphasize the anti-commutation, or, to emphasize the grading, graded-commutative or, if the supercommutativity is understood, simply commutative. Any commutative algebra is a supercommutative algebra if given the trivial gradation (i.e. all elements are even). Grassmann algebras (also known as exterior algebras) are the most common examples of nontrivial supercommutative algebras. The supercenter of any superalgebra is the set of elements that supercommute with all elements, and is a supercommutative algebra. The even subalgebra of a supercommutative algebra is always a commutative algebra. That is, even elements always commute. Odd elements, on the other hand, always anticommute. That is, for odd x and y. In particular, the square of any odd element x vanishes whenever 2 is invertible: Thus a commutative superalgebra (with 2 invertible and nonzero degree one component) always contains nilpotent elements. A Z-graded anticommutative algebra with the property that x^2 = 0 for every element x of odd grade (irrespective of whether 2 is invertible) is called an alternating algebra.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.