Explore l'estimation des erreurs dans l'intégration numérique et ses applications dans la prévision, en mettant l'accent sur la méthode de Romberg et l'extrapolation de Richardson.
Explore l'analyse numérique des équations non linéaires, en mettant l'accent sur les critères de convergence et les méthodes comme la bisection et l'itération à point fixe.
Explique la descente en pente avec arrêt précoce et descente en pente stochastique pour optimiser l'entraînement du modèle et éviter les surajustements.
Explore l'accélération de l'algorithme d'itération de valeur en utilisant la théorie de contrôle et les techniques de fractionnement de matrice pour atteindre une convergence plus rapide.