Le théorème de Charkovski, démontré par , mathématicien ukrainien, est un théorème de mathématiques portant sur l'itération des fonctions continues. Il donne des contraintes sur la présence de points périodiques lorsqu'on itère la fonction f, c'est-à-dire de points x0 tels que la suite récurrente définie par correspondante soit périodique.
Ce théorème fait partie des premiers exemples remarquables de la théorie des systèmes dynamiques, introduisant la notion de chaos. Sa popularité est telle qu'il se retient souvent sous la forme d'un « slogan », correspondant à un énoncé simplifié :
3-cycle implique chaos
Il faut comprendre par là que toute fonction continue présentant un cycle de période 3 admet un cycle de période n pour tout entier n.
Avant de l'exposer, nous devons d'abord définir l'ordre de Charkovski.
L'ordre de Charkovski est une relation d'ordre définie sur les entiers strictement positifs de la façon suivante :
Autrement dit, on place d'abord les impairs à partir de 3 par ordre croissant, puis les impairs multipliés par 2, puis par 4, etc. ( qu'on range les entiers non puissances de 2 par ordre lexicographique en comparant en priorité leur 2-valuation) et l'on termine par les puissances de 2 par ordre décroissant.
Le théorème de Charkovski s'énonce alors comme suit :
Soit une fonction continue sur un intervalle , à valeurs dans . Si admet un point périodique de période , alors pour tout succédant à dans l'ordre de Charkovski, admet un point périodique de période .
est un point périodique de période si où apparaît fois, et où est le plus petit entier vérifiant cette propriété. Ainsi, si admet un point périodique de période 3, alors admet des points périodiques de n'importe quelle période.
Ce théorème admet une réciproque : pour tout entier r > 0, on peut exhiber une fonction admettant des points de période r mais aucun point de période strictement inférieure à r pour l'ordre de Charkovski.
Suite logistique
Théorème des valeurs intermédiaires
http://denisfeldmann.fr/PDF/sarkovski.pdf : une démonstration courte.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
droite|vignette|Diagramme de bifurcation de la suite logistique. En mathématiques, et en particulier dans l'étude des systèmes dynamiques, un diagramme de bifurcation illustre les valeurs visitées asymptotiquement (points fixes, points périodiques, attracteurs chaotiques) par un système en fonction d'un paramètre. Fichier:Bifurcation DiagramB.png|Diagramme de bifurcation pour l'[[attracteur de Rössler]]. Fichier:Henon bifurcation map b=0.3.png|Diagramme de bifurcation pour l'[[attracteur de Hénon]].
En mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
En mathématiques, une suite logistique est une suite réelle simple, mais dont la récurrence n'est pas linéaire. Sa relation de récurrence est Suivant la valeur du paramètre μ (dans [0; 4] pour assurer que les valeurs de x restent dans [0; 1]), elle engendre soit une suite convergente, soit une suite soumise à oscillations, soit une suite chaotique. Souvent citée comme exemple de la complexité de comportement pouvant surgir d'une relation non linéaire simple, cette suite fut popularisée par le biologiste Robert May en 1976.
In the first part of this thesis we are interested in the asymptotic performance analysis of Non-Binary Low-Density Parity-Check (NBLDPC) codes over the Binary Erasure Channel (BEC) decoded via the suboptimal Belief Propagation (BP) decoder as well as the ...
In this paper a class of discretized piecewise linear chaotic maps of a very high dimensions are used for communication over a noisy channel. An information payload that is sent over a channel is controlled in the transmitter and is related to the symbolic ...
Microstate analysis of ERP and EEG topographies reveals stable patterns of brain activity. Little is known about the changes from one stable state to another. During such changes significant topographic instabilities are observed together with low ERP fiel ...