droite|vignette|Diagramme de bifurcation de la suite logistique.
En mathématiques, et en particulier dans l'étude des systèmes dynamiques, un diagramme de bifurcation illustre les valeurs visitées asymptotiquement (points fixes, points périodiques, attracteurs chaotiques) par un système en fonction d'un paramètre.
Fichier:Bifurcation DiagramB.png|Diagramme de bifurcation pour l'[[attracteur de Rössler]].
Fichier:Henon bifurcation map b=0.3.png|Diagramme de bifurcation pour l'[[attracteur de Hénon]].
Fichier:TentMap BifurcationDiagram.png|Diagramme de bifurcation de la {{Lien|langue=en|trad=Tent map|fr=fonction tente}}.
Fichier:Gauss Orbit Map alpha=6.2.png|Diagramme de bifurcation de la {{Lien|langue=en|trad=Gauss iterated map|fr=fonction de Gauss itérée}}.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Dans l'étude des systèmes dynamiques, un attracteur (ou ensemble-limite) est un ensemble d'états vers lequel un système évolue de façon irréversible en l'absence de perturbations. Constituants de base de la théorie du chaos, au moins cinq types sont définis : ponctuel, quasi périodique, périodique, étrange et spatial. Stephen Smale serait à l'origine du terme attracteur.
La théorie des bifurcations, en mathématiques et en physique est l'étude de certains aspects des systèmes dynamiques. Une bifurcation intervient lorsqu'un petit changement d'un paramètre physique produit un changement majeur dans l'organisation du système. Des exemples classiques d'une bifurcation en sciences pures sont par exemple les rythmes circadiens de populations animales en biologie théorique et les solutions de météo en mathématique et physique non linéaire, en sciences de l'ingénieur il y a aussi le flambage d'une poutre élastique (l'expérience peut être faite avec une règle d'écolier) ou les transitions de phase de matériaux (température critique de bifurcation, concentration critique).
En mathématiques, les nombres de Feigenbaum ou constantes de Feigenbaum sont deux nombres réels découverts par le mathématicien Mitchell Feigenbaum en 1975. Tous deux expriment des rapports apparaissant dans les diagrammes de bifurcation de la théorie du chaos. vignette|droite|Exemple de diagramme de bifurcation (en abscisse, r désigne le paramètre μ). Les diagrammes de bifurcation concernent les valeurs limites prises par les suites de type où f est une fonction réelle, définie positive et trois fois dérivable sur [0, 1] et possédant un maximum unique sur cet intervalle (c’est-à-dire sans maximum relatif), noté f.
This course focuses on the physical mechanisms at the origin of the transition of a flow from laminar to turbulent using the hydrodynamic instability theory.
Linear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali
The course provides students with the tools to approach the study of nonlinear systems and chaotic dynamics. Emphasis is given to concrete examples and numerical applications are carried out during th