An electronic countermeasure (ECM) is an electrical or electronic device designed to trick or deceive radar, sonar, or other detection systems, like infrared (IR) or lasers. It may be used both offensively and defensively to deny targeting information to an enemy. The system may make many separate targets appear to the enemy, or make the real target appear to disappear or move about randomly. It is used effectively to protect aircraft from guided missiles. Most air forces use ECM to protect their aircraft from attack. It has also been deployed by military ships and recently on some advanced tanks to fool laser/IR guided missiles. It is frequently coupled with stealth advances so that the ECM systems have an easier job. Offensive ECM often takes the form of jamming. Self-protecting (defensive) ECM includes using blip enhancement and jamming of missile terminal homers. The first example of electronic countermeasures being applied in a combat situation took place during the Russo-Japanese war. On July 13, 1904, Russian wireless telegraphy stations installed in the Port Arthur fortress and on board Russian light cruisers successfully interrupted wireless communication between a group of Japanese battleships. The spark-gap transmitters in the Russian stations generated senseless noise while the Japanese were making attempts to coordinate their efforts in the bombing of a Russian naval base. Germany and United Kingdom interfered with enemy communications along the western front during World War I while the Royal Navy tried to intercept German naval radio transmissions. There were also efforts at sending false radio signals, having shore stations send transmissions using ships' call signs, and jamming enemy radio signals. World War II ECM expanded to include dropping chaff (originally called Window), jamming and spoofing radar and navigation signals. German bomber aircraft navigated using radio signals transmitted from ground stations, which the British disrupted with spoofed signals in the Battle of the Beams.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (7)
Convertisseurs analogiques numériques et analogiques
Couvre la conversion analogique-numérique et numérique-analogique, y compris l'échantillonnage, la quantification, le convertisseur Flash, la génération de courant pondérée et le réseau R2R.
Circuits linéaires passifs : analyse de fréquence 2
Explore les fonctions de transfert de tension et de courant dans les circuits linéaires passifs, en se concentrant sur les diagrammes de Bode et l'analyse de fréquence.
Afficher plus
Publications associées (86)

Architecture for integrated RF photonic downconversion of electronic signals

Tobias Kippenberg, Junqiu Liu

Electronic analog to digital converters (ADCs) are run-ning up against the well-known bit depth versus bandwidth trade off. Towards this end, radio frequency (RF) photonic-enhanced ADCs have been the subject of interest for some time. Optical frequency com ...
Optica Publishing Group2023

How to Find Molecules with Long-lasting Charge Migration?

Jiri Vanicek, Alan Scheidegger, Nikolay Golubev

Under certain conditions, the ionization of a molecule may create a superposition of electronic states, leading to ultrafast electron dynamics. If controlled, this motion could be used in attochemistry applications, but it has been shown that the decoheren ...
SWISS CHEMICAL SOC2023

Organic electrochemical transistors printed from degradable materials as disposable biochemical sensors

Danick Briand, Nicolas Francis Fumeaux, Silvia Demuru, Claudio Pinto Almeida

Transient electronics hold promise in reducing electronic waste, especially in applications that require only a limited lifetime. While various degradable electronic and physical sensing devices have been proposed, there is growing interest in the developm ...
2023
Afficher plus
Concepts associés (16)
Guidage de missile par infrarouge
vignette|Autodirecteur infrarouge du missile IRIS-T. vignette|Un missile AIM-9 Sidewinder touche un North American F-86 Sabre lors d’un tir d’exercice à la base China Lake en 1978. vignette|Autodirecteurs infrarouges des missiles Anti-navire léger et Missile moyenne portée. Le guidage par infrarouge ou autodirecteur infrarouge ou guidage thermique est un système de guidage à infrarouge passif qui utilise l'émission de lumière infrarouge d'une cible pour la localiser et la suivre.
Leurre (militaire)
thumb|400px| Nacelle à leurres du Transall C-160 Un leurre est un système de contre-mesure utilisé comme autodéfense. Pour échapper à une menace, un aéronef visé peut éjecter un ou plusieurs leurres constitués d'un matériau dégageant une forte chaleur en se consumant. Ceci a pour effet de détourner les armements hostiles (missiles) se guidant sur la signature thermique de leurs cibles.
Electronic counter-countermeasure
Electronic counter-countermeasures (ECCM) is a part of electronic warfare which includes a variety of practices which attempt to reduce or eliminate the effect of electronic countermeasures (ECM) on electronic sensors aboard vehicles, ships and aircraft and weapons such as missiles. ECCM is also known as electronic protective measures (EPM), chiefly in Europe. In practice, EPM often means resistance to jamming. A more detailed description defines it as the electronic warfare operations taken by a radar to offset the enemy's countermeasure.
Afficher plus
MOOCs associés (2)
Electronique I
Introduction à l’électronique analogique- première partie. Fonctions de base réalisées à l’aide des amplificateurs opérationnels.
Electronique I
Introduction à l’électronique analogique- première partie. Fonctions de base réalisées à l’aide des amplificateurs opérationnels.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.