Concept

Théorème d'impossibilité d'Arrow

Résumé
Le théorème d'impossibilité d'Arrow, également appelé « paradoxe d'Arrow » (du nom de l'économiste américain Kenneth Arrow), est une confirmation mathématique, dans certaines conditions précises, du paradoxe soulevé et décrit dès 1785 par Nicolas de Condorcet. Supposons que chaque électeur ne puisse exprimer son opinion que de manière qualitative, en indiquant comment il classe les unes par rapport aux autres les options envisagées. Entre deux options, l'électeur indique celle qu'il préfère ou s'il est indifférent entre les deux, par contre il ne peut pas exprimer l'intensité de sa préférence. Dans ce cadre, il n'existe pas de processus de choix social indiscutable, qui permette d'exprimer une hiérarchie des préférences cohérente pour une collectivité à partir de l'agrégation des préférences individuelles exprimées par chacun des membres de cette même collectivité. Pour Condorcet, il n'existe pas de système simple assurant cette cohérence. Arrow tente de démontrer, sous réserve d'acceptation de ses hypothèses, qu'il n'existe pas du tout de système assurant la cohérence, hormis celui où le processus de choix social coïncide avec celui d'un seul individu, parfois surnommé dictateur, indépendamment du reste de la population. Nicolas de Condorcet énonce en 1785 dans son ouvrage Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix le paradoxe de Condorcet, soit l'idée selon laquelle la définition d'une position commune à plusieurs votants se heurte à des difficultés logiques, notamment le non-respect de la règle de transitivité. Ce théorème est dû à Kenneth Arrow, lauréat 1972 du Prix de la Banque de Suède en sciences économiques en mémoire d'Alfred Nobel communément surnommé Prix Nobel d'économie, lequel l'a exposé dans sa thèse et l'a publié en 1951 dans son livre Choix social et valeurs individuelles (Social Choice and Individual Values). Si un individu ayant des préférences classe une option A devant une option B, la présence d'une troisième option C toutes choses égales par ailleurs ne doit pas en principe intervertir cette préférence.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.