Concept

List of graphs

This partial list of graphs contains definitions of graphs and graph families. For collected definitions of graph theory terms that do not refer to individual graph types, such as vertex and path, see Glossary of graph theory. For links to existing articles about particular kinds of graphs, see . Some of the finite structures considered in graph theory have names, sometimes inspired by the graph's topology, and sometimes after their discoverer. A famous example is the Petersen graph, a concrete graph on 10 vertices that appears as a minimal example or counterexample in many different contexts. File:Balaban 10-cage alternative drawing.svg|[[Balaban 10-cage]] File:Balaban 11-cage.svg|[[Balaban 11-cage]] File:Bidiakis cube.svg|[[Bidiakis cube]] File:Brinkmann graph LS.svg|[[Brinkmann graph]] File:Bull graph.circo.svg|[[Bull graph]] File:Butterfly graph.svg|[[Butterfly graph]] File:Chvatal graph.draw.svg|[[Chvátal graph]] File:Diamond graph.svg|[[Diamond graph]] File:Dürer graph.svg|[[Dürer graph]] File:Ellingham-Horton 54-graph.svg|[[Ellingham–Horton 54-graph]] File:Ellingham-Horton 78-graph.svg|[[Ellingham–Horton 78-graph]] File:Errera graph.svg|[[Errera graph]] File:Franklin graph.svg|[[Franklin graph]] File:Frucht planar Lombardi.svg|[[Frucht graph]] File:Goldner-Harary graph.svg|[[Goldner–Harary graph]] File:GolombGraph.svg|[[Golomb graph]] File:Groetzsch-graph.svg|[[Grötzsch graph]] File:Harries graph alternative_drawing.svg|[[Harries graph]] File:Harries-wong graph.svg|[[Harries–Wong graph]] File:Herschel graph no col.svg|[[Herschel graph]] File:Hoffman graph.svg|[[Hoffman graph]] File:Holt graph.svg|[[Holt graph]] File:Horton graph.svg|[[Horton graph]] File:Kittell graph.svg|[[Kittell graph]] File:Markström-Graph.svg|[[Erdős–Gyárfás conjecture|Markström graph]] File:McGee graph.svg|[[McGee graph]] File:Meredith graph.svg|[[Meredith graph]] File:Moser spindle.svg |[[Moser spindle]] File:Sousselier graph.svg|[[Sousselier graph]] File:Poussin graph planar.svg|[[Poussin graph]] File:Robertson graph.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (22)
MATH-448: Statistical analysis of network data
A first course in statistical network analysis and applications.
MATH-260(a): Discrete mathematics
Study of structures and concepts that do not require the notion of continuity. Graph theory, or study of general countable sets are some of the areas that are covered by discrete mathematics. Emphasis
MATH-602: Inference on graphs
The class covers topics related to statistical inference and algorithms on graphs: basic random graphs concepts, thresholds, subgraph containment (planted clique), connectivity, broadcasting on trees,
Afficher plus
Séances de cours associées (88)
Valeurs propres et séquences
Discute de la recherche de graphes d-réguliers avec des propriétés de valeur propre spécifiques et de l'existence de séquences de Ramasugan pour les nombres premiers d-opt.
Analyse de la sommation temporelle
Couvre l'analyse des sommations temporelles en biomécanique.
Cognition sociale
S'oriente vers la connaissance sociale, l'efficacité de l'apprentissage collaboratif, le consensus de groupe et le rôle de la technologie dans l'amélioration des interactions.
Afficher plus
Publications associées (146)
Concepts associés (10)
Forbidden graph characterization
In graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph K_5 and the complete bipartite graph K_3,3.
Hypercube (graphe)
Les hypercubes, ou n-cubes, forment une famille de graphes. Dans un hypercube , chaque sommet porte une étiquette de longueur sur un alphabet , et deux sommets sont adjacents si leurs étiquettes ne diffèrent que d'un symbole. C'est le graphe squelette de l'hypercube, un polytope n-dimensionnel, généralisant la notion de carré (n = 2) et de cube (n = 3). Dans les années 1980, des ordinateurs furent réalisés avec plusieurs processeurs connectés selon un hypercube : chaque processeur traite une partie des données et ainsi les données sont traitées par plusieurs processeurs à la fois, ce qui constitue un calcul parallèle.
Graphe étoile
thumb|upright=3|Les graphes en étoile S3, S4, S5 et S6. En mathématiques, et plus particulièrement en théorie des graphes, une étoile Sk est le graphe biparti complet K1,k. On peut aussi le voir comme un arbre avec un nœud et k feuilles, du moins lorsque k > 1. Enfin, on peut le définir comme un graphe connexe dont tous les sommets sauf un sont de degré 1. Certains auteurs définissent toutefois Sk comme l'arbre à k sommets de diamètre maximal 2. Attention, avec cette définition, une étoile n'a que k − 1 feuilles.
Afficher plus
MOOCs associés (1)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.