Concept

Méthode de Halley

Résumé
In numerical analysis, Halley's method is a root-finding algorithm used for functions of one real variable with a continuous second derivative. It is named after its inventor Edmond Halley. The algorithm is second in the class of Householder's methods, after Newton's method. Like the latter, it iteratively produces a sequence of approximations to the root; their rate of convergence to the root is cubic. Multidimensional versions of this method exist. Halley's method exactly finds the roots of a linear-over-linear Padé approximation to the function, in contrast to Newton's method or the Secant method which approximate the function linearly, or Muller's method which approximates the function quadratically. Edmond Halley was an English mathematician who introduced the method now called by his name. Halley's method is a numerical algorithm for solving the nonlinear equation f(x) = 0. In this case, the function f has to be a function of one real variable. The method consists of a sequence of iterations: beginning with an initial guess x0. If f is a three times continuously differentiable function and a is a zero of f but not of its derivative, then, in a neighborhood of a, the iterates xn satisfy: This means that the iterates converge to the zero if the initial guess is sufficiently close, and that the convergence is cubic. The following alternative formulation shows the similarity between Halley's method and Newton's method. The expression is computed only once, and it is particularly useful when can be simplified: When the second derivative is very close to zero, the Halley's method iteration is almost the same as the Newton's method iteration. Consider the function Any root of f which is not a root of its derivative is a root of g; and any root r of g must be a root of f provided the derivative of f at r is not infinite. Applying Newton's method to g gives with and the result follows. Notice that if f′ (c) = 0, then one cannot apply this at c because g(c) would be undefined. Suppose a is a root of f but not of its derivative.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.