Accurate measurement-data interpretation leads to increased understanding of structural behavior and enhanced asset-management decision making. In this paper, four data-interpretation methodologies, residual minimization, traditional Bayesian model updatin ...
In causal inference the effect of confounding may be controlled using regression adjustment in an outcome model, propensity score adjustment, inverse probability of treatment weighting or a combination of these. Approaches based on modelling the treatment ...
In this work, we present, analyze, and implement a class of multilevel Markov chain Monte Carlo(ML-MCMC) algorithms based on independent Metropolis--Hastings proposals for Bayesian inverse problems. In this context, the likelihood function involves solving ...
Neural Network (NN) classifiers can assign extreme probabilities to samples that have not appeared during training (out-of-distribution samples) resulting in erroneous and unreliable predictions. One of the causes for this unwanted behaviour lies in the us ...
IEEE Institute of Electrical and Electronics Engineers2020
Many decisions rely on how we evaluate potential outcomes and estimate their corresponding probabilities of occurrence. Outcome evaluation is subjective because it requires consulting internal preferences and is sensitive to context. In contrast, probabili ...
In i-vector based speaker recognition systems, back-end classifiers are trained to factor out nuisance information and retain only the speaker identity. As a result, variabilities arising due to gender, language and accent ( among many others) are suppress ...
We study the fundamental problem of learning an unknown, smooth probability function via pointwise Bernoulli tests. We provide a scalable algorithm for efficiently solving this problem with rigorous guarantees. In particular, we prove the convergence rate ...
Mean Field inference is central to statistical physics. It has attracted much interest in the Computer Vision community to efficiently solve problems expressible in terms of large Conditional Random Fields. However, since it models the posterior probabilit ...
In the last decade, i-vector and Joint Factor Analysis (JFA) approaches to speaker modeling have become ubiquitous in the area of automatic speaker recognition. Both of these techniques involve the computation of posterior probabilities, using either Gauss ...
We study bias arising as a result of nonlinear transformations of random variables in random or mixed effects models and its effect on inference in group-level studies or in meta-analysis. The findings are illustrated on the example of overdispersed binomi ...