Qualité de l'ajustementThe goodness of fit of a statistical model describes how well it fits a set of observations. Measures of goodness of fit typically summarize the discrepancy between observed values and the values expected under the model in question. Such measures can be used in statistical hypothesis testing, e.g. to test for normality of residuals, to test whether two samples are drawn from identical distributions (see Kolmogorov–Smirnov test), or whether outcome frequencies follow a specified distribution (see Pearson's chi-square test).
Test du χ² de PearsonEn statistique, le test du χ2 de Pearson ou test du χ2 d'indépendance est un test statistique qui s'applique sur des données catégorielles pour évaluer la probabilité de retrouver la différence de répartition observée entre les catégories si celles-ci étaient indépendantes dans le processus de répartition sous-jacent. Il convient aux données non-appariées prises sur de grands échantillons (n>30). Il est le test du χ2 le plus communément utilisé (comparativement aux autres tests du χ2 tels que le test du χ2 de Yates, le test du rapport de vraisemblance ou le test du porte-manteau.
Test du χ²En statistique, le test du khi carré, aussi dit du khi-deux, d’après sa désignation symbolique , est un test statistique où la statistique de test suit une loi du sous l'hypothèse nulle. Par exemple, il permet de tester l'adéquation d'une série de données à une famille de lois de probabilité ou de tester l'indépendance entre deux variables aléatoires. Ce test a été proposé par le statisticien Karl Pearson en 1900.
Loi du χ²En statistiques et en théorie des probabilités, la loi du centrée (prononcé « khi carré » ou « khi-deux ») avec k degrés de liberté est la loi de la somme de carrés de k lois normales centrées réduites indépendantes. La loi du est utilisée en inférence statistique et pour les tests statistiques notamment le test du χ2. La loi du χ2 non centrée généralise la loi du . Soient k variables aléatoires X, ... , X indépendantes suivant la loi normale centrée et réduite, c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.