Résumé
En statistique, le test du khi carré, aussi dit du khi-deux, d’après sa désignation symbolique , est un test statistique où la statistique de test suit une loi du sous l'hypothèse nulle. Par exemple, il permet de tester l'adéquation d'une série de données à une famille de lois de probabilité ou de tester l'indépendance entre deux variables aléatoires. Ce test a été proposé par le statisticien Karl Pearson en 1900. Tout test de statistique classique vise à vérifier une hypothèse, en particulier par rapport à l'hypothèse nulle, notée H0, qui postule qu'une différence entre des jeux de données est due au hasard. L'hypothèse alternative que l'on vérifie suppose que les données considérées proviennent de variables aléatoires qui suivent une loi de probabilité donnée, et l'on souhaite tester la validité de cette hypothèse. Ces données ayant été réparties en classes, il faut : calculer algébriquement la distance entre les données observées et les données théoriques attendues ; se donner a priori un risque d'erreur, celle consistant à rejeter l'hypothèse, alors qu'elle est vraie (la valeur 5 % est souvent choisie par défaut) ; déterminer le nombre de degrés de liberté du problème à partir du nombre de classes, et à l'aide d'une table de χ, déduire, en tenant compte du nombre de degrés de liberté, la distance critique qui a une probabilité de dépassement égale à ce risque. Si la distance calculée entre les données observées et théoriques est supérieure à la distance critique, on conclut que le résultat n'est pas dû seulement aux fluctuations d'échantillonnage, et que l'hypothèse nulle H0 doit être rejetée. Le risque choisi au départ est celui de donner une réponse fausse lorsque les fluctuations d'échantillonnage sont seules en cause. Le rejet est évidemment une réponse négative dans les tests d'adéquation et d'homogénéité mais il apporte une information positive dans les tests d'indépendance. Pour ceux-ci, il montre le caractère significatif de la différence, ce qui est intéressant en particulier dans les tests de traitement d'une maladie.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.