Résumé
In mathematics, especially in homological algebra and algebraic topology, a Künneth theorem, also called a Künneth formula, is a statement relating the homology of two objects to the homology of their product. The classical statement of the Künneth theorem relates the singular homology of two topological spaces X and Y and their product space . In the simplest possible case the relationship is that of a tensor product, but for applications it is very often necessary to apply certain tools of homological algebra to express the answer. A Künneth theorem or Künneth formula is true in many different homology and cohomology theories, and the name has become generic. These many results are named for the German mathematician Hermann Künneth. Let X and Y be two topological spaces. In general one uses singular homology; but if X and Y happen to be CW complexes, then this can be replaced by cellular homology, because that is isomorphic to singular homology. The simplest case is when the coefficient ring for homology is a field F. In this situation, the Künneth theorem (for singular homology) states that for any integer k, Furthermore, the isomorphism is a natural isomorphism. The map from the sum to the homology group of the product is called the cross product. More precisely, there is a cross product operation by which an i-cycle on X and a j-cycle on Y can be combined to create an -cycle on ; so that there is an explicit linear mapping defined from the direct sum to . A consequence of this result is that the Betti numbers, the dimensions of the homology with coefficients, of can be determined from those of X and Y. If is the generating function of the sequence of Betti numbers of a space Z, then Here when there are finitely many Betti numbers of X and Y, each of which is a natural number rather than , this reads as an identity on Poincaré polynomials. In the general case these are formal power series with possibly infinite coefficients, and have to be interpreted accordingly.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
MATH-506: Topology IV.b - cohomology rings
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
MATH-323: Topology III - Homology
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
MATH-561: Spectral theory
This course is an introduction to the spectral theory of linear operators acting in Hilbert spaces. The main goal is the spectral decomposition of unbounded selfadjoint operators. We will also give el
Afficher plus
Séances de cours associées (35)
Le théorème topologique de Künneth
Explore le théorème topologique de Künneth, mettant l'accent sur la commutativité et l'équivalence homotopique dans les complexes en chaîne.
Homologie des surfaces de Riemann
Explore l'homologie des surfaces de Riemann, y compris l'homologie singulière et le standard n-simplex.
Homologie singulière : premières propriétés
Couvre les premières propriétés de l'homologie singulière et la préservation des composants de décomposition et de chemin connectés dans les espaces topologiques.
Afficher plus
Publications associées (8)

Relative plus constructions

Jérôme Scherer

Let h be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair (X,H), consisting of a connected space X and an hperfect ...
2023

Euclid preparation: XXVIII. Forecasts for ten different higher-order weak lensing statistics

Frédéric Courbin, Gianluca Castignani, Jean-Luc Starck, Austin Chandler Peel, Maurizio Martinelli, Yi Wang, Richard Massey, Fabio Finelli, Marcello Farina

Recent cosmic shear studies have shown that higher-order statistics (HOS) developed by independent teams now outperform standard two-point estimators in terms of statistical precision thanks to their sensitivity to the non-Gaussian features of large-scale ...
EDP SCIENCES S A2023

A Künneth theorem for configuration spaces

Kathryn Hess Bellwald

We construct a spectral sequence converging to the homology of the ordered configuration spaces of a product of parallelizable manifolds. To identify the second page of this spectral sequence, we introduce a version of the Boardman-Vogt tensor product for ...
2022
Afficher plus
Concepts associés (16)
Cohomologie des faisceaux
Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines. Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines : où est une résolution injective du faisceau , et désigne le groupe abélien des sections globales de . A unique isomorphisme canonique près, ces groupes ne dépendent pas de la résolution injective choisie. Le zéroième groupe est canoniquement isomorphe à .
Homologie singulière
En topologie algébrique, l'homologie singulière est une construction qui permet d'associer à un espace topologique X une suite homologique de groupes abéliens libres ou de modules. Cette association est un invariant topologique non complet, c'est-à-dire que si deux espaces sont homéomorphes alors ils ont mêmes groupes d'homologie singulière en chaque degré mais que la réciproque est fausse. Le théorème de Stokes appliqué à des formes fermées donne des intégrales nulles. Cependant, il se fonde sur une hypothèse cruciale de compacité.
Cup-produit
En topologie algébrique (une branche des mathématiques), le cup-produit est une opération binaire définie sur les groupes de cohomologie qui permet d'assembler des cocycles. Cette opération est graduée, associative et distributive, ce qui permet de définir l'. Introduite à l'origine en cohomologie singulière, des constructions analogues existent pour différentes théories cohomologiques. Le cup-produit se généralise sous la forme du .
Afficher plus