Quantum electrodynamics (QED), a relativistic quantum field theory of electrodynamics, is among the most stringently tested theories in physics. The most precise and specific tests of QED consist of measurements of the electromagnetic fine-structure constant, α, in various physical systems. Checking the consistency of such measurements tests the theory. Tests of a theory are normally carried out by comparing experimental results to theoretical predictions. In QED, there is some subtlety in this comparison, because theoretical predictions require as input an extremely precise value of α, which can only be obtained from another precision QED experiment. Because of this, the comparisons between theory and experiment are usually quoted as independent determinations of α. QED is then confirmed to the extent that these measurements of α from different physical sources agree with each other. The agreement found this way is to within ten parts in a billion (10−8), based on the comparison of the electron anomalous magnetic dipole moment and the Rydberg constant from atom recoil measurements as described below. This makes QED one of the most accurate physical theories constructed thus far. Besides these independent measurements of the fine-structure constant, many other predictions of QED have been tested as well. Precision tests of QED have been performed in low-energy atomic physics experiments, high-energy collider experiments, and condensed matter systems. The value of α is obtained in each of these experiments by fitting an experimental measurement to a theoretical expression (including higher-order radiative corrections) that includes α as a parameter. The uncertainty in the extracted value of α includes both experimental and theoretical uncertainties. This program thus requires both high-precision measurements and high-precision theoretical calculations. Unless noted otherwise, all results below are taken from. The most precise measurement of α comes from the anomalous magnetic dipole moment, or g−2 (pronounced "g minus 2"), of the electron.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (42)

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.