Polarisation du videDans la théorie quantique des champs et plus précisément en électrodynamique quantique, la polarisation du vide est un processus où un champ électromagnétique modifie la répartition « spatiale » de paires électron virtuel-positron, lesquelles paires à leur tour modifient la répartition des charges et des courants initialement produits par le champ électromagnétique. Ses effets ont été expérimentalement observés en 1997 par l'accélérateur de particules japonais TRISTAN du centre de recherche KEK.
MuoniumLe muonium est un atome exotique formé d'un antimuon μ lié à un électron e. Découvert en 1960, il est semblable à un atome d'hydrogène, avec une durée de vie d'environ , pendant lesquelles il se comporte comme un élément chimique aux propriétés voisines de celles de l'hydrogène. Il peut ainsi être considéré comme le plus léger des isotopes de l'hydrogène.
Champ (physique)En physique, un champ est la donnée, pour chaque point de l'espace-temps, de la valeur d'une grandeur physique. Cette grandeur physique peut être scalaire (température, pression...), vectorielle (vitesse des particules d'un fluide, champ électrique...) ou tensorielle (comme le tenseur de Ricci en relativité générale). Un exemple de champ scalaire est donné par la carte des températures d'un bulletin météorologique télévisé : la température atmosphérique prend, en chaque point, une valeur particulière.
SpinLe 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
PositroniumLe positronium, noté Ps ou ee, est un système quasi stable constitué d'un positron et d'un électron formant ensemble un atome exotique. Son ensemble de niveaux d'énergie est similaire à celui de l'atome d'hydrogène, constitué d'un électron et d'un proton (voir hydrogénoïde). Cependant, à cause de sa masse considérablement réduite, les fréquences associées aux raies spectrales sont moins de la moitié de celles des raies correspondantes de l'hydrogène.
Décalage de LambEn physique quantique, le décalage de Lamb ou déplacement de Lamb (en anglais Lamb shift) représente la différence d'énergie entre les deux niveaux de l'atome d'hydrogène, notés en termes spectroscopiques : 2S1/2 et 2P1/2. Ce décalage n'est pas prédit par l'équation de Dirac, qui donne la même énergie à ces deux états. Il a été découvert par Willis Eugene Lamb et son étudiant Robert Retherford, en 1947. À la suite de la découverte de Lamb, il a été démontré que ce décalage est dû à l'interaction entre les fluctuations quantiques du vide et l'électron de l'hydrogène dans ces orbitales.
Effet Hall quantique entierL'effet Hall quantique entier est une version en mécanique quantique de l'effet Hall mise en évidence en 1980 par le physicien allemand Klaus von Klitzing. Cette découverte a eu d'importantes applications dans le développement des semi-conducteurs et en métrologie, notamment dans la détermination de la constante de structure fine.
Moment magnétique anomalEn physique des particules, le moment magnétique anomal désigne l'écart entre la valeur du facteur de Landé g d'un lepton et la valeur donnée par l'équation de Dirac. Cette anomalie est remarquablement bien expliquée par le modèle standard, en particulier par l'électrodynamique quantique, lorsque l'influence du vide quantique est prise en compte. L'anomalie est une quantité sans dimension, notée et donnée par : . Au moment cinétique orbital d'une particule de charge et de masse est associé un moment magnétique orbital : Le facteur est appelé rapport gyromagnétique.
Constante de RydbergLa constante de Rydberg, nommée en l'honneur du physicien Johannes Rydberg, est une constante physique découverte en mesurant le spectre de l'hydrogène. Son unité est le mètre à la puissance moins un (m). Elle est définie à partir des résultats d'Anders Jonas Ångström et Johann Jakob Balmer. Chaque élément chimique a sa propre constante de Rydberg, qui peut être obtenue à partir de la constante de Rydberg.
Longueur d'onde de ComptonQuand un photon primaire heurte une particule libre, un photon secondaire est émis dont la longueur d’onde est plus grande que celle du photon primaire, c'est l'effet Compton. La différence de longueur d’onde entre le photon primaire et le photon émis, est proportionnelle à une valeur constante portant le nom de longueur d’onde de Compton, comme l'exprime la relation suivante (voir l'article principal sur la diffusion Compton pour plus d'explications) : où : est le décalage entre les longueurs d'onde du photon incident et du photon diffusé ; est la longueur d'onde de Compton ; est l'angle de diffusion.