In semiconductor manufacturing, a low-κ is a material with a small relative dielectric constant (κ, kappa) relative to silicon dioxide. Low-κ dielectric material implementation is one of several strategies used to allow continued scaling of microelectronic devices, colloquially referred to as extending Moore's law. In digital circuits, insulating dielectrics separate the conducting parts (wire interconnects and transistors) from one another. As components have scaled and transistors have gotten closer together, the insulating dielectrics have thinned to the point where charge build up and crosstalk adversely affect the performance of the device. Replacing the silicon dioxide with a low-κ dielectric of the same thickness reduces parasitic capacitance, enabling faster switching speeds (in case of synchronous circuits) and lower heat dissipation. In conversation such materials may be referred to as "low-k" (spoken "low-kay") rather than "low-κ" (low-kappa). In integrated circuits, and CMOS devices, silicon dioxide can readily be formed on surfaces of Si through thermal oxidation, and can further be deposited on the surfaces of conductors using chemical vapor deposition or various other thin film fabrication methods. Due to the wide range of methods that can be used to cheaply form silicon dioxide layers, this material is used conventionally as the baseline to which other low permittivity dielectrics are compared. The relative dielectric constant of SiO2, the insulating material still used in silicon chips, is 3.9. This number is the ratio of the permittivity of SiO2 divided by permittivity of vacuum, εSiO2/ε0, where ε0 = 8.854×10−6 pF/μm. There are many materials with lower relative dielectric constants but few of them can be suitably integrated into a manufacturing process. Development efforts have focused primarily on the following classes of materials: Fluorosilicate glass By doping SiO2 with fluorine to produce fluorinated silica glass, the relative dielectric constant is lowered from 3.9 to 3.5.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (13)
PHYS-201(d): General physics: electromagnetism
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
MSE-306: Crystalline materials: structures and properties
The properties of crystals and polycrystalline (ceramic) materials including electrical, thermal and electromechanical phenomena are studied in connection with structures, point defects and phase rela
PHYS-201(a): General physics : electromagnetism
Le cours traite des concepts de l'électromagnétisme et des ondes électromagnétiques.
Afficher plus
Séances de cours associées (56)
Lignes de micro-ondes imprimées: avantages et inconvénients
Explore les avantages et les inconvénients de la fabrication de lignes micro-ondes imprimées et de substrats.
Matériaux diélectriques : Polarisation et condensateurs
Explore les matériaux diélectriques, la polarisation et les condensateurs, en se concentrant sur les charges liées et l'impact de la constante diélectrique.
Apprentissage mixte sur le diélectrique: séance de questions-réponses
Couvre les diélectriques, y compris les charges liées, le vecteur de déplacement et la loi de Gauss.
Afficher plus
Concepts associés (7)
Diélectrique high-k
Un diélectrique high-κ (high-κ dielectric) est un matériau avec une constante diélectrique κ élevée (comparée à celle du dioxyde de silicium) utilisé dans la fabrication de composants semi-conducteur en remplacement de la grille habituellement en dioxyde de silicium. L'utilisation de ce type de matériau constitue l'une des stratégies de développement permettant la miniaturisation des composés en microélectronique, afin de permettre de continuer à suivre la Loi de Moore.
Silicium-germanium
Les alliages silicium-germanium forment une famille de composés de formule GexSi1-x, utilisés en tant que semi-conducteurs dans des transistors. Ces alliages possèdent également de bonnes caractéristiques thermoélectriques aux hautes températures (au-dessus de ) et sont notamment utilisés pour la génération d’électricité dans le domaine spatial. Ce sont par exemple des alliages de ce type qui sont utilisés pour l' des sondes Voyager. Transistor Thermoélectricité Catégorie:Composé du silicium Catégorie:Comp
Fabrication des dispositifs à semi-conducteurs
thumb|upright=1.5|Évolution de la finesse de gravure des processeurs entre 1970 et 2017 La fabrication des dispositifs à semi-conducteur englobe les différentes opérations permettant l'élaboration de composants électroniques basés sur des matériaux semi-conducteurs. Entrent dans cette catégorie de composants à semi-conducteur, les composants discrets qui n'ont qu'une seule fonction comme les diodes et les transistors, et les circuits intégrés plus complexes, intégrant plusieurs composants, jusqu'à des milliards, dans le même boîtier.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.