Spieker centerIn geometry, the Spieker center is a special point associated with a plane triangle. It is defined as the center of mass of the perimeter of the triangle. The Spieker center of a triangle △ABC is the center of gravity of a homogeneous wire frame in the shape of △ABC. The point is named in honor of the 19th-century German geometer Theodor Spieker. The Spieker center is a triangle center and it is listed as the point X(10) in Clark Kimberling's Encyclopedia of Triangle Centers.
Alignement (géométrie)vignette|Sur cette figure, les points a1,a2,a3 sont alignés, ainsi que les points b1,b2,b3. En revanche, les points a1,a2,b3 ne sont pas alignés. En géométrie, l’alignement est une propriété satisfaite par certains familles de points, lorsque ces derniers appartiennent collectivement à une même droite. Deux points étant toujours alignés en vertu du premier axiome d’Euclide, la notion d’alignement ne présente d’intérêt qu’à partir d’une collection de trois points.
Droites concourantesEn mathématiques, des droites concourantes sont des droites qui ont un point d'intersection commun, ce point étant appelé point de concours. Lorsque seules deux droites sont en jeu, le fait qu'elles soient concourantes est équivalent au fait qu'elles soient sécantes, ce qui fait que le vocable ne s'emploie pas dans ce cadre. En revanche, à partir de trois droites en présence, les deux propriétés ne sont pas équivalentes : trois droites concourantes sont nécessairement sécantes deux à deux mais l'implication réciproque est fausse.
Droite d'Eulervignette|Droite d'Euler en rouge, médianes en orange, médiatrices en vert, et hauteurs en bleu. Le point rouge est le centre du cercle d'Euler. En géométrie euclidienne, dans un triangle non équilatéral, la droite d'Euler est une droite passant par plusieurs points remarquables du triangle, dont l'orthocentre, le centre de gravité (ou isobarycentre) et le centre du cercle circonscrit. Cette notion s'étend au quadrilatère et au tétraèdre.