En géométrie algébrique, les cycles sont des combinaisons formelles de fermés irréductibles d'un schéma donné. Le quotient du groupe des cycles par une relation d'équivalence convenable aboutit aux qui sont des objets fondamentaux.
Tous les schémas considérés ici seront supposés noethériens de dimension finie.
On fixe un schéma qu'on supposera noethérien de dimension finie . Pour tout entier positif ou nul , on appelle -cycle irréductible (resp. -cocycle irréductible) de un fermé irréductible de dimension (resp. codimension ). Un -cycle est une combinaison formelle finie
où les coefficients sont des entiers relatifs, et où les sont des -cycles irréductibles. On définit similairement les
cocycles. L'ensemble des -cycles est un groupe commutatif, qui est d'ailleurs le groupe abélien libre engendré par les fermés irréductibles de dimension de . On note ce groupe . Similairement, le groupe des cocycles est noté . On remarque que ces groupes sont nuls si .
Les 1-cocycles s'appellent les diviseurs de Weil. Ce sont donc des combinaisons entières de fermés irréductibles de codimension 1. Rappelons qu'un fermé irréductible est de codimension 1 si ce n'est pas une composante irréductible de , et si tout fermé irréductible qui le contient strictement est une composante irréductible de .
La somme directe (finie) des est le groupe des cycles de .
Le groupe est engendré par les composantes irréductibles de .
Le groupe est engendré par les composantes irréductibles de de dimension maximale.
Le groupe est engendré par les points fermés de . Ce sont les 0-cycles.
Le groupe est engendré certains points fermés (ceux qui sont de codimension ).
Supposons que soit irréductible de dimension 1. Alors .
Soit un anneau local noethérien de dimension 1. Soit un élément régulier non inversible de . On définit l'ordre de comme étant la longueur du -module artinien . Notons-le . On montre que l'application ord est additif et induit donc un homomorphisme de groupes où désigne l'anneau total des fractions de .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The aim of the course is to give an introduction to linear algebraic groups and to give an insight into a beautiful subject that combines algebraic geometry with group theory.
The goal of this course/seminar is to introduce the students to some contemporary aspects of geometric group theory. Emphasis will be put on Artin's Braid groups and Thompson's groups.
In algebraic geometry, a branch of mathematics, an adequate equivalence relation is an equivalence relation on algebraic cycles of smooth projective varieties used to obtain a well-working theory of such cycles, and in particular, well-defined intersection products. Pierre Samuel formalized the concept of an adequate equivalence relation in 1958. Since then it has become central to theory of motives. For every adequate equivalence relation, one may define the of pure motives with respect to that relation.
In number theory and algebraic geometry, the Tate conjecture is a 1963 conjecture of John Tate that would describe the algebraic cycles on a variety in terms of a more computable invariant, the Galois representation on étale cohomology. The conjecture is a central problem in the theory of algebraic cycles. It can be considered an arithmetic analog of the Hodge conjecture. Let V be a smooth projective variety over a field k which is finitely generated over its prime field.
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
Conjugation spaces are equipped with an involution such that the fixed points have the same mod 2 cohomology (as a graded vector space, a ring, and even an unstable algebra) but with all degrees divided by 2, generalizing the classical examples of complex ...
We use birational geometry to show that the existence of rational points on proper rationally connected varieties over fields of characteristic 0 is a consequence of the existence of rational points on terminal Fano varieties. We discuss several consequenc ...
We construct a spectral sequence converging to the homology of the ordered configuration spaces of a product of parallelizable manifolds. To identify the second page of this spectral sequence, we introduce a version of the Boardman-Vogt tensor product for ...