Ellipse de SteinerEn géométrie, l’ellipse de Steiner d'un triangle est l'unique ellipse tangente à chacun des côtés en leur milieu. Elle est nommée en référence au mathématicien suisse Jakob Steiner. Dans le cas où le triangle est équilatéral, cette ellipse est le cercle inscrit. Comme tout autre triangle est l'image d'un triangle équilatéral par une application affine, l'image du cercle inscrit par une telle application est une ellipse qui satisfait les conditions de tangence au milieu de chaque côté.
Coordonnées trilinéairesEn géométrie, les coordonnées trilinéaires d'un point relativement à un triangle donné, notées (x : y : z) sont, à une constante multiplicative strictement positive près, les distances algébriques relativement aux côtés (étendus) du triangle. Pour un triangle ABC, le rapport x / y est le rapport des distances algébriques du point aux côtés (BC) et (AC) respectivement et ainsi de suite par permutation sur A, B, C.
Extended sideIn plane geometry, an extended side or sideline of a polygon is the line that contains one side of the polygon. The extension of a finite side into an infinite line arises in various contexts. In an obtuse triangle, the altitudes from the acute angled vertices intersect the corresponding extended base sides but not the base sides themselves. The excircles of a triangle, as well as the triangle's inconics that are not inellipses, are externally tangent to one side and to the other two extended sides.
Steiner ellipseIn geometry, the Steiner ellipse of a triangle, also called the Steiner circumellipse to distinguish it from the Steiner inellipse, is the unique circumellipse (ellipse that touches the triangle at its vertices) whose center is the triangle's centroid. Named after Jakob Steiner, it is an example of a circumconic. By comparison the circumcircle of a triangle is another circumconic that touches the triangle at its vertices, but is not centered at the triangle's centroid unless the triangle is equilateral.
Cercle d'EulerEn géométrie, le cercle d'Euler d'un triangle (aussi appelé cercle des neuf points, cercle de Feuerbach, cercle de Terquem, cercle médian) est l'unique cercle passant par les neuf points remarquables suivants : Les trois milieux des trois côtés du triangle ; Le pied de chacune des trois hauteurs du triangle ; Le milieu de chacun des trois segments reliant l'orthocentre H à un sommet du triangle. Dans son mémoire E325 présenté en 1763, Euler a considéré séparément les deux cercles circonscrits aux triangles et sans noter leur coïncidence .
Medial triangleIn Euclidean geometry, the medial triangle or midpoint triangle of a triangle △ABC is the triangle with vertices at the midpoints of the triangle's sides AB, AC, BC. It is the n = 3 case of the midpoint polygon of a polygon with n sides. The medial triangle is not the same thing as the median triangle, which is the triangle whose sides have the same lengths as the medians of △ABC. Each side of the medial triangle is called a midsegment (or midline). In general, a midsegment of a triangle is a line segment which joins the midpoints of two sides of the triangle.
Conjugué isogonalEn géométrie, le conjugué isogonal d'un point dans un triangle est le point où concourent les droites symétriques, par rapport aux bissectrices, des droites passant par chaque sommet et ce point. vignette Antiparallèle (mathématiques) Deux couples de droites (d, d) et (Δ, Δ') sont antiparallèles si les bissectrices des angles qu'ils forment ont même direction. Les angles de droites (d, Δ) et (Δ', d) sont égaux (modulo π). On dit que d''' est antiparallèle à d par rapport à (Δ, Δ').
Nagel pointIn geometry, the Nagel point (named for Christian Heinrich von Nagel) is a triangle center, one of the points associated with a given triangle whose definition does not depend on the placement or scale of the triangle. It is the point of concurrency of all three of the triangle's splitters. Given a triangle △ABC, let T_A, T_B, T_C be the extouch points in which the A-excircle meets line BC, the B-excircle meets line CA, and the C-excircle meets line AB, respectively. The lines AT_A, BT_B, CT_C concur in the Nagel point N of triangle △ABC.
Hauteur d'un triangleEn géométrie plane, une hauteur d'un triangle est une droite passant par un sommet et coupant perpendiculairement le côté opposé à ce sommet (éventuellement prolongé). Les pieds des hauteurs sont les projetés orthogonaux de chacun des sommets sur la droite portant le côté opposé. On donne également le nom de hauteur au segment joignant un sommet et le pied de la hauteur passant par ce sommet, ainsi qu'à la longueur de ce segment, soit la distance séparant un sommet et la droite portant son côté opposé.
CentroïdeEn mathématiques, le centre de masse ou centroïde d’un domaine du plan ou de l’espace est un point d’équilibre pour une certaine mesure sur ce domaine. Il correspond au centre pour un cercle ou une sphère, et plus généralement correspond au centre de symétrie lorsque le domaine en possède un. Mais son existence et son unicité sont garanties dès que le domaine est de mesure finie. En géométrie, cette notion est synonyme de barycentre (pour un ensemble fini de points affectés de masses ponctuelles, le centre de masse est le barycentre des points pondérés).