Concept

Conjugué isogonal

En géométrie, le conjugué isogonal d'un point dans un triangle est le point où concourent les droites symétriques, par rapport aux bissectrices, des droites passant par chaque sommet et ce point. vignette Antiparallèle (mathématiques) Deux couples de droites (d, d) et (Δ, Δ') sont antiparallèles si les bissectrices des angles qu'ils forment ont même direction. Les angles de droites (d, Δ) et (Δ', d) sont égaux (modulo π). On dit que d''' est antiparallèle à d par rapport à (Δ, Δ'). Quatre points A, B, C et D tels que trois d'entre eux ne sont pas alignés sont cocycliques si et seulement si les droites (AB) et (DC) sont antiparallèles par rapport aux droites (AD) et (BC). 500px|center Si deux couples de droites (d, d) et (Δ, Δ') sont antiparallèles et concourants, on dit qu'ils sont isogonaux. Lorsqu'une droite est antiparallèle à un côté d'un triangle par rapport aux deux autres, on sous-entend assez souvent les deux derniers côtés. On dira : « dans le triangle ABC, la droite (d) est antiparallèle à (AB) » à la place de « la droite (d) est antiparallèle à (AB) par rapport à (CA) et (CB) ». Deux couples de droites concourantes (d, d) et (Δ, Δ') sont isogonaux s'ils sont antiparallèles. Ils ont les mêmes bissectrices. Les angles de droites (d, Δ) et (Δ', d) sont égaux (modulo π). On dit que d''' est isogonale à d par rapport à (Δ, Δ'). Soit d, Δ, Δ' trois droites concourantes. La droite d symétrique de d par rapport à la bissectrice intérieure de Δ et Δ' est isogonale à d par rapport à (Δ, Δ'). 500px|center Soit (Δ) et (Δ') deux droites concourantes en A, M et N deux points sur deux droites (d) et (d') concourantes en A. M1 et N1 sont les projections orthogonales de M et N sur (Δ), M2 et N2 sur (Δ'). Les deux couples de droites (Δ, Δ') et (d, d''') sont isogonaux si et seulement si les points M1N1M2N2 sont cocycliques. Le centre O du cercle est le milieu de [MN]. (M1M2) est orthogonale à (d), (N1N2) est orthogonale à (d) Soit P un point distinct des sommets du triangle ABC et n'appartenant pas au cercle circonscrit, P1, P2, P3 sont les projections orthogonales de P sur les côtés du triangle.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (15)
Centre du triangle
En géométrie plane, la notion de centre du triangle est une notion qui généralise celle de centre d'un carré ou d'un cercle. Certains points remarquables du triangle, comme le centre de gravité, le centre du cercle circonscrit, le centre du cercle inscrit et l'orthocentre sont connus depuis la Grèce antique et constructibles simplement. Chacun de ces centres classiques a la propriété d'être invariant (plus précisément équivariant) par similitudes.
Centre du cercle d'Euler
En géométrie, le centre du cercle d'Euler, ou centre des neuf points est un centre du triangle, un point d'un triangle plat qui ne dépend que de l'existence du triangle. Son nom vient du fait qu'il s'agit du centre du cercle d'Euler ou cercle des neuf points, qui passe par neuf points caractéristiques du triangle : les milieux des trois côtés, les pieds des trois hauteurs et les points milieux entre les sommets et l'orthocentre. Le centre du cercle d'Euler est référencé par X(5) dans l'Encyclopedia of Triangle Centers de Clark Kimberling.
Point isodynamique
En géométrie euclidienne, les points isodynamiques du triangle sont des points associés à un triangle, telles qu'une inversion centrée en un de ces points transforme le triangle en un triangle équilatéral, et que les distances entre le point isodynamique aux sommets du triangle sont inversement proportionnelles aux longueurs des côtés opposés du triangle. Ce sont des centres du triangle, invariants par transformation de Möbius. Un triangle équilatéral n'a qu'un point isodynamique, en son centre de gravité ; les autres en ont deux.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.