Publications associées (29)

L'évaporation du trafic, opportunités et défis pour la mobilité d'aujourd'hui et demain

Pauline Geneviève Thérèse Hosotte

This research is the result of four years of practical and scientific investigation of the phenomenon of traffic evaporation, which was considered and then demonstrated to be the opposite of traffic induction. It has anchored, in practice and in time, an o ...
EPFL2022

Joint Fusion Learning of Multiple Time Series Prediction

Orçun Gümüs

Accurate traffic density estimations is essential for numerous purposes like the developing successful transit policies or to forecast future traffic conditions for navigation. Current developments in the machine learning and computer systems bring the tra ...
2019

Accessibility Futures

Paul Richard Anderson

This study uses accessibility as a performance measure to evaluate a matrix of future land use and network scenarios for planning purposes. The concept of accessibility dates to the 1950s, but this type of application to transportation planning is new. Pre ...
Wiley-Blackwell2013

Experienced Travel Time Prediction for Freeway Systems

Nikolaos Geroliminis, Mehmet Yildirimoglu

Travel time is considered as one of the most important performance measures for roadway systems, and dissemination of travel time information can help travelers to make reliable travel decisions such as route choice or time departure. Since the traffic dat ...
Ieee2012

Potentials and Deficits of a recent Approach for urban Traffic Monitoring based on Floating Car Data

Recently, the author proposed a new approach how to take advantage of common floating car data in context of urban traffic monitoring (cf. Neumann, 2009: Efficient queue length detection at traffic signals using probe vehicle data and data fusion, 16th ITS ...
2010

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.