Publication

On the new era of urban traffic monitoring with massive drone data: The pNEUMA large-scale field experiment

Résumé

The new era of sharing information and "big data" has raised our expectations to make mobility more predictable and controllable through a better utilization of data and existing resources. The realization of these opportunities requires going beyond the existing traditional ways of collecting traffic data that are based either on fixed-location sensors or GPS devices with low spatial coverage or penetration rates and significant measurement errors, especially in congested urban areas. Unmanned Aerial Systems (UAS) or simply "drones" have been proposed as a pioneering tool of the Intelligent Transportation Systems (ITS) infrastructure due to their unique characteristics, but various challenges have kept these efforts only at a small size. This paper describes the system architecture and preliminary results of a first-of-its-kind experiment, nicknamed pNEUMA, to create the most complete urban dataset to study congestion. A swarm of 10 drones hovering over the central business district of Athens over multiple days to record traffic streams in a congested area of a 1.3 km(2) area with more than 100 km-lanes of road network, around 100 busy intersections (signalized or not), many bus stops and close to half a million trajectories. The aim of the experiment is to record traffic streams in a multi-modal congested environment over an urban setting using UAS that can allow the deep investigation of critical traffic phenomena. The pNEUMA experiment develops a prototype system that offers immense opportunities for researchers many of which are beyond the interests and expertise of the authors. This open science initiative creates a unique observatory of traffic congestion, a scale an-order-of-magnitude higher than what was available till now, that researchers from different disciplines around the globe can use to develop and test their own models.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Embouteillage (route)
vignette|Embouteillage à Los Angeles en 1953. Un embouteillage (« bouchon » ou « file » en Europe, « congestion » au Canada) est un encombrement de la circulation, généralement automobile, réduisant fortement la vitesse de circulation des véhicules sur la voie. right|thumb|Les départs ou les retours de vacances sont une des sources d'embouteillage (Algarve, Portugal, été 2005). Les mots embouteillage, bouchon et congestion (également utilisé en anglais) sont utilisés par analogie, tous ces mots étant auparavant employés dans d'autres domaines.
Traffic flow
In mathematics and transportation engineering, traffic flow is the study of interactions between travellers (including pedestrians, cyclists, drivers, and their vehicles) and infrastructure (including highways, signage, and traffic control devices), with the aim of understanding and developing an optimal transport network with efficient movement of traffic and minimal traffic congestion problems.
Système de transport intelligent
Les systèmes de transport intelligents (STI) (en anglais : intelligent transportation systems - ITS) sont les applications des nouvelles technologies de l'information et de la communication au domaine des transports et de sa logistique. On les dit « intelligents » parce que leur développement repose sur des fonctions généralement associées à l'intelligence : capacités sensorielles et de choix, mémoire, communication, traitement de l'information et comportement adaptatif.
Afficher plus
Publications associées (59)

pNEUMA dataset

Nikolaos Geroliminis, Emmanouil Barmpounakis

pNEUMA is an open large-scale dataset of naturalistic trajectories of half a million vehicles that have been collected by a one-of-a-kind experiment by a swarm of drones in the congested downtown area of Athens, Greece. A unique observatory of traffic cong ...
EPFL Infoscience2024

Modeling and Optimization of Ridesplitting Operations

Caio Vitor Beojone

Ridesourcing has driven a lot of attention in recent years with the expansion of companies like Uber, Lift, and many others around the world. Companies use mobile applications connected through the internet to match drivers and their passengers real-time. ...
EPFL2023

Mitigating traffic congestion induced by transportation network companies: A policy analysis

Kenan Zhang

This paper analyzes and evaluates several policies aiming to mitigate the congestion effect a Transportation Network Company (TNC) brings to bear on an idealized city that contains a dense central core surrounded by a larger periphery. The TNC offers both ...
2022
Afficher plus
MOOCs associés (2)
Intro to Traffic Flow Modeling and Intelligent Transport Systems
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.
Intro to Traffic Flow Modeling and Intelligent Transport Systems
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.