Concept

Espérance mathématique

Résumé
En théorie des probabilités, l'espérance mathématique d'une variable aléatoire réelle est, intuitivement, la valeur que l'on s'attend à trouver, en moyenne, si l'on répète un grand nombre de fois la même expérience aléatoire. Elle se note \mathbb E(X) et se lit . Elle correspond à une moyenne pondérée des valeurs que peut prendre cette variable. Dans le cas où celle-ci prend un nombre fini de valeurs, il s'agit d'une moyenne pondérée par les probabilités d'apparition de chaque valeur. Dans le cas où la variable aléatoire possède une densité de probabilité, l'espérance est la moyenne des valeurs pondérées par cette densité. De manière mathématiquement plus précise et plus générale, l'espérance d'une variable aléatoire est l'intégrale de cette variable selon la mesure de probabilité de l'espace probabilisé de départ. La présentation intuitive de l'espérance exposée ci-dessus est la conséquence de la loi des grands nombres : l'espérance, si elle existe, est la limite pres
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (29)

Chargement

Chargement

Chargement

Afficher plus
Personnes associées

Aucun résultat

Unités associées

Aucun résultat

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement