Résumé
En théorie des probabilités, l'espérance mathématique d'une variable aléatoire réelle est, intuitivement, la valeur que l'on s'attend à trouver, en moyenne, si l'on répète un grand nombre de fois la même expérience aléatoire. Elle se note et se lit . Elle correspond à une moyenne pondérée des valeurs que peut prendre cette variable. Dans le cas où celle-ci prend un nombre fini de valeurs, il s'agit d'une moyenne pondérée par les probabilités d'apparition de chaque valeur. Dans le cas où la variable aléatoire possède une densité de probabilité, l'espérance est la moyenne des valeurs pondérées par cette densité. De manière mathématiquement plus précise et plus générale, l'espérance d'une variable aléatoire est l'intégrale de cette variable selon la mesure de probabilité de l'espace probabilisé de départ. La présentation intuitive de l'espérance exposée ci-dessus est la conséquence de la loi des grands nombres : l'espérance, si elle existe, est la limite presque-sûre de la moyenne des résultats au cours de plusieurs expériences, quand leur nombre augmente à l'infini. L'espérance est une caractéristique importante d'une loi de probabilité : c'est un indicateur de position. Ainsi, une variable aléatoire est dite centrée si son espérance est nulle. Elle forme, avec la variance, indicateur de dispersion, l'ensemble des indicateurs qui sont presque systématiquement donnés quand est présentée une variable aléatoire. L'espérance joue un rôle important dans un grand nombre de domaines, comme dans la théorie des jeux, la théorie de la décision, ou encore en théorie du signal et en statistique inférentielle où un estimateur est dit sans biais si son espérance est égale à la valeur du paramètre à estimer. La notion d'espérance est popularisée par Christian Huygens dans son Traité du hasard de 1656 sous le nom de . La répartition des mises d'un jeu de hasard si la partie est interrompue avant sa fin, ou encore l'estimation des sommes qu'on peut espérer gagner dans un tel jeu, ont suscité l'intérêt des mathématiciens dès le (Luca Pacioli), et de nombreuses contributions et controverses jusque vers le milieu du , notamment de la part de Tartaglia, Forestani et Cardan.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (26)
COM-417: Advanced probability and applications
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
CS-433: Machine learning
Machine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
CS-456: Artificial neural networks/reinforcement learning
Since 2010 approaches in deep learning have revolutionized fields as diverse as computer vision, machine learning, or artificial intelligence. This course gives a systematic introduction into influent
Afficher plus
Séances de cours associées (97)
Linéarité des attentes
Couvre la preuve de la linéarité des attentes pour les variables aléatoires indépendantes et discute des propriétés de la valeur attendue.
Variables aléatoires et valeur prévue
Introduit des variables aléatoires, des distributions de probabilité et des valeurs attendues au moyen d'exemples pratiques.
Le théorème de la moyenne
Explore le théorème de la moyenne, les critères d'intégrabilité, les propriétés de l'intégrale et les concepts de volume.
Afficher plus
Publications associées (132)

Investigating latent behaviour in multiday activity scheduling

In practice, most operational activity-based models have focused on single-day analyses. This common simplifying assumption significantly limits the models' behavioural realism, as they cannot adequately capture the dynamics and processes involved in the s ...
2024
Afficher plus