Résumé
In mathematics, an algebraic function is a function that can be defined as the root of a polynomial equation. Quite often algebraic functions are algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of such functions are: Some algebraic functions, however, cannot be expressed by such finite expressions (this is the Abel–Ruffini theorem). This is the case, for example, for the Bring radical, which is the function implicitly defined by In more precise terms, an algebraic function of degree n in one variable x is a function that is continuous in its domain and satisfies a polynomial equation where the coefficients ai(x) are polynomial functions of x, with integer coefficients. It can be shown that the same class of functions is obtained if algebraic numbers are accepted for the coefficients of the ai(x)'s. If transcendental numbers occur in the coefficients the function is, in general, not algebraic, but it is algebraic over the field generated by these coefficients. The value of an algebraic function at a rational number, and more generally, at an algebraic number is always an algebraic number. Sometimes, coefficients that are polynomial over a ring R are considered, and one then talks about "functions algebraic over R". A function which is not algebraic is called a transcendental function, as it is for example the case of . A composition of transcendental functions can give an algebraic function: . As a polynomial equation of degree n has up to n roots (and exactly n roots over an algebraically closed field, such as the complex numbers), a polynomial equation does not implicitly define a single function, but up to n functions, sometimes also called branches. Consider for example the equation of the unit circle: This determines y, except only up to an overall sign; accordingly, it has two branches: An algebraic function in m variables is similarly defined as a function which solves a polynomial equation in m + 1 variables: It is normally assumed that p should be an irreducible polynomial.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
MATH-327: Topics in complex analysis
The goal of this course is to treat selected topics in complex analysis. We will mostly focus on holomorphic functions in one variable. At the end we will also discuss holomorphic functions in several
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-101(d): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Afficher plus
Séances de cours associées (30)
Géométrie euclidienne : opérations et constructibilité
Couvre les opérations fondamentales et la constructibilité en géométrie euclidienne, explorant les limites des constructions géométriques et des contributions historiques.
Théorème des fonctions implicites
Couvre le Théorème des fonctions implicites, démontrant les conditions dans lesquelles une fonction peut être exprimée implicitement.
Limites et opérations relatives aux limites
Couvre les limites, les opérations algébriques et les limites infinies avec des exemples de comportement des fonctions à proximité des points limites.
Afficher plus
Publications associées (27)