An information filtering system is a system that removes redundant or unwanted information from an information stream using (semi)automated or computerized methods prior to presentation to a human user. Its main goal is the management of the information overload and increment of the semantic signal-to-noise ratio. To do this the user's profile is compared to some reference characteristics. These characteristics may originate from the information item (the content-based approach) or the user's social environment (the collaborative filtering approach). Whereas in information transmission signal processing filters are used against syntax-disrupting noise on the bit-level, the methods employed in information filtering act on the semantic level. The range of machine methods employed builds on the same principles as those for information extraction. A notable application can be found in the field of email spam filters. Thus, it is not only the information explosion that necessitates some form of filters, but also inadvertently or maliciously introduced pseudo-information. On the presentation level, information filtering takes the form of user-preferences-based newsfeeds, etc. Recommender systems and content discovery platforms are active information filtering systems that attempt to present to the user information items (film, television, music, books, news, web pages) the user is interested in. These systems add information items to the information flowing towards the user, as opposed to removing information items from the information flow towards the user. Recommender systems typically use collaborative filtering approaches or a combination of the collaborative filtering and content-based filtering approaches, although content-based recommender systems do exist. Before the advent of the Internet, there are already several methods of filtering information; for instance, governments may control and restrict the flow of information in a given country by means of formal or informal censorship.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.