ErgodicityIn mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process.
State space (computer science)In computer science, a state space is a discrete space representing the set of all possible configurations of a "system". It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory. For instance, the toy problem Vacuum World has a discrete finite state space in which there are a limited set of configurations that the vacuum and dirt can be in. A "counter" system, where states are the natural numbers starting at 1 and are incremented over time has an infinite discrete state space.
Flot (mathématiques)Le flot, coulée ou encore courant est, en mathématiques, un concept fondamental utilisé en géométrie différentielle. La notion de flot permet notamment de modéliser le déplacement dans le temps des éléments d'un fluide. Pour ce faire, on crée une application α qui, à chaque point x de l'espace concerné par l'écoulement, associe un autre point α(x,t), correspondant à la position qu'aurait une particule du fluide à l'instant t, si elle avait été située en x à l'instant 0. thumb|Flot associé à l'équation différentielle d'un pendule.
SystèmeUn système est un ensemble d' interagissant entre eux selon certains principes ou règles. Par exemple une molécule, le système solaire, une ruche, une société humaine, un parti, une armée etc. Un système est déterminé par : sa frontière, c'est-à-dire le critère d'appartenance au système (déterminant si une entité appartient au système ou fait au contraire partie de son environnement) ; ses interactions avec son environnement ; ses fonctions (qui définissent le comportement des entités faisant partie du système, leur organisation et leurs interactions) ; Certains systèmes peuvent également avoir une mission (ses objectifs et sa raison d'être) ou des ressources, qui peuvent être de natures différentes (humaine, naturelle, matérielle, immatérielle.
Modèle cognitifUn modèle cognitif est une représentation simplifiée visant à modéliser des processus psychologiques ou intellectuels. Leur champ d'application est principalement la psychologie cognitive et l'intelligence artificielle à travers la notion d'agent. Les sciences cognitives se servent de manière récurrente de modèles cognitifs : devant la complexité des processus permettant d'expliquer les raisonnements et les comportements, il est en effet pratique de passer par des hypothèses simplificatrices sous forme de modèles.
Dynamique symboliqueEn mathématiques, la dynamique symbolique est une branche de l'étude des systèmes dynamiques. Cela consiste à étudier un système en partitionnant l'espace en un nombre fini de régions et en s'intéressant aux suites possibles de régions traversées lors de l'évolution du système. Si l'on associe à chaque région un symbole, on peut associer à chaque trajectoire une suite (infinie) de symboles, d'où le nom de « dynamique symbolique ».
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Théorie ergodiquevignette|Flux d'un ensemble statistique dans le potentiel x6 + 4*x3 - 5x**2 - 4x. Sur de longues périodes, il devient tourbillonnant et semble devenir une distribution lisse et stable. Cependant, cette stabilité est un artefact de la pixellisation (la structure réelle est trop fine pour être perçue). Cette animation est inspirée d'une discussion de Gibbs dans son wikisource de 1902 : Elementary Principles in Statistical Mechanics, Chapter XII, p. 143 : « Tendance d'un ensemble de systèmes isolés vers un état d'équilibre statistique ».
Biologie des systèmesLa biologie des systèmes (ou biologie intégrative) est un domaine récent de la biologie qui étudie les organismes vivants comme les systèmes qu'ils sont en réalité, par opposition aux approches historiques qui tendent à décomposer l'étude à tous les niveaux, en biologie, physiologie, biochimie... La biologie systémique cherche à intégrer différents niveaux d'informations pour comprendre comment fonctionne réellement un système biologique.
ConnexionnismeLe connexionnisme est une approche utilisée en sciences cognitives, neurosciences, psychologie et philosophie de l'esprit. Le connexionnisme modélise les phénomènes mentaux ou comportementaux comme des processus émergents de réseaux d'unités simples interconnectées. Le plus souvent les connexionnistes modélisent ces phénomènes à l'aide de réseaux de neurones. Il s'agit d'une théorie qui a émergé à la fin des années 1980 en tant qu'alternative au computationnalisme (Putnam, Fodor) alors dominant.